Stoichiometry #3 (Limiting Reactant)

1. How many moles of \(\text{H}_2\text{O} \) would be produced if 3.5 mol \(\text{H}_2 \) react with 1.5 mol \(\text{O}_2 \) in the following reaction:
 \[
 2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O}
 \]

2. If 12.0 moles of \(\text{S}_8 \) reacted with 100. moles of \(\text{O}_2 \) in the unbalanced equation:
 \[
 \text{S}_8 + \text{O}_2 \rightarrow \text{SO}_3
 \]
 Which reactant is limiting, and how much of the other reactant would be left over?

3. 325 g of \(\text{H}_2\text{O} \) is poured onto a 450 g block of sodium metal. What is the limiting reactant? How many liters of \(\text{H}_2 \) gas are produced at S.T.P.? The equation for this reaction is:
 \[
 2 \text{Na} + 2 \text{H}_2\text{O} \rightarrow 2 \text{NaOH} + \text{H}_2
 \]

4. If 120 g of sand (\(\text{SiO}_2 \)) is poured into 0.50 \(\ell \) of 2.0 \(M \) hydrofluoric acid (HF), identify the limiting reactant and determine how much silicon tetrafluoride would be produced? The chemical equation for this reaction is:
 \[
 \text{SiO}_2 + 4 \text{HF} \rightarrow \text{SiF}_4 + 2 \text{H}_2\text{O}
 \]
5. If you add approximately 5.0 g of H₂O to approximately 5.0 g of calcium carbide (CaC₂), the reaction produces enough acetylene gas to make a satisfyingly loud explosion. Identify the limiting reactant and determine how many liters of acetylene (C₂H₂) gas would have been produced at S.T.P., assuming the *unbalanced* equation (which you will need to balance first) is:

\[
\text{CaC}_2 + \text{H}_2\text{O} \rightarrow \text{C}_2\text{H}_2 + \text{Ca(OH)}_2
\]

(Remember that H₂O is H⁺ + OH⁻ in a chemical reaction.)

6. 3.27 g of Zn are reacted with 100. ml of 1.00 M HCl in the reaction:

\[
\text{Zn} + 2 \text{HCl} \rightarrow \text{ZnCl}_2 + \text{H}_2
\]

(a) Determine which reactant is limiting.

(b) Determine the number of grams of ZnCl₂ that will be produced.

(c) If the reaction conditions are 0°C and 1 atm pressure (S.T.P.), determine the number of liters of H₂ gas that will be produced.

(d) If the non-limiting reactant is Zn, determine the mass in grams that will be left over.

(e) If the non-limiting reactant is HCl, determine the concentration (molarity) of the HCl after the reaction is complete. (Assume the volume does not change.)