Name:	
	Block:

Equilibrium Expressions

Write the expression for the equilibrium constants for each of the following reactions.

1.
$$Xe + 3F_2 \rightleftharpoons XeF_6$$

2.
$$CH_4 + 2H_2S \rightleftharpoons CS_2 + 4H_2$$

3.
$$3 \text{ CO}_2 + 4 \text{ H}_2\text{O} \rightleftharpoons \text{C}_3\text{H}_8 + 5 \text{ O}_2$$

4. Write the chemical equation for the equilibrium system given by the expression

$$K_{eq} = \frac{[H_2O]^2 [O_2]}{[H_2O_2]^2}$$

5. Write the chemical equation for the equilibrium system given by the expression:

$$K_{eq} = \frac{[\text{NH}_3]^2}{[\text{N}_2] [\text{H}_2]^3}$$

6. Write the chemical equation for the equilibrium system given by the expression:

$$K_{eq} = \frac{[\text{HCl}]^4 [\text{O}_2]}{[\text{H}_2 \text{O}]^2 [\text{Cl}_2]^2}$$

7. A reaction vessel contains $0.150\,M$ CH₄, $0.233\,M$ H₂O, $0.259\,M$ H₂, and $0.513\,M$ CO. If the equilibrium reaction is $CH_4 + H_2O \rightleftharpoons CO + 3H_2$, calculate the equilibrium constant K_{eq} . 8. A 10ℓ flask contains 0.128 mol of CO, 0.155 mol of H_2 and 0.0244 mol of CH_3OH . If the equilibrium reaction is $CH_3OH \rightleftharpoons CO + 2H_2$, calculate the equilibrium constant K_{eq} . 9. For the reaction $2 \text{ NOBr} \rightleftharpoons 2 \text{ NO} + \text{Br}_2$, the value of the equilibrium constant K_{eq} is 0.0125. If the concentration of NO is $0.750\,M$ and the concentration of Br_2 is $0.200\,M$, what is the concentration of NOBr?