Name: _____

Honors Chemistry: \Box yellow \Box blue \Box red

Kinetics & Equilibrium Review Problems

The following initial rate data were collected for the reaction:

$$\operatorname{CeCl}_4(aq) + \operatorname{FeCl}_2(aq) \longrightarrow \operatorname{CeCl}_3(aq) + \operatorname{FeCl}_3(aq)$$

$[CeCl_4]$	$[FeCl_2]$	reaction rate
$\left(\frac{\mathrm{mol}}{\ell}\right)$	$\left(\frac{\mathrm{mol}}{\ell}\right)$	$\left(\frac{\mathrm{mol}}{\ell \cdot \mathrm{s}}\right)$
3.00×10^{-6}	8.00×10^{-6}	2.42×10^{-7}
1.80×10^{-5}	8.00×10^{-6}	1.45×10^{-6}
3.00×10^{-6}	2.40×10^{-5}	$7.26 imes 10^{-7}$

- 1. What is the rate law for the above experiment?
- 2. What is the value of the rate constant, k, for the above rate law (in the correct units)?

3. A reaction vessel at equilibrium at a temperature of 2000 K contains $0.20 M H_2$, $0.30 M CO_2$, $0.55 M H_2O$, and 0.55 M CO. The chemical reaction is:

$$\operatorname{CO}_{2}(g) + \operatorname{H}_{2}(g) \rightleftharpoons \operatorname{H}_{2}\operatorname{O}(g) + \operatorname{CO}(g)$$

(a) Write the equilibrium expression and calculate the value of the equilibrium constant.

- (b) A leak develops at the top of the reaction vessel and some of the H_2 gas escapes. How does this affect the concentration of CO_2 in the vessel?
- 4. Given the chemical reaction:

$$\operatorname{FeCl}_2(aq) + \operatorname{Pb}(\operatorname{NO}_3)_2(aq) \longrightarrow \operatorname{PbCl}_2(s) + \operatorname{Fe}(\operatorname{NO}_3)_2(aq)$$

(a) Write the net ionic equation for this reaction.

(b) Write the equilibrium expression for this reaction.

- (c) Write the expression for the solubility product constant, K_{sp} , for PbCl₂.
- (d) The value of K_{sp} for PbCl₂ is 1.6×10^{-5} . Calculate the concentration of Pb²⁺ ions in a saturated solution of PbCl₂.