Name:
Block:
Le Châtelier's Principle
Consider the chemical equation: $N_{2}\left(g\right)+3H_{2}\left(g\right)\rightleftharpoons2NH_{3}\left(g\right)+46.1\frac{\rm kJ}{\rm mol}$
1. Indicate which direction the equilbrium would shift as a result of each of the following:
(a) Adding N_2
(b) Removing NH_3
(c) Removing H ₂
(d) Decreasing the temperature
(e) Increasing the pressure

2. Write the equilibrium expression for the above reaction.

3.	The value of K_{eq} for this reaction is 5.34×10^6 at 25°C. If the reaction is at equilibrium at
	25°C, the concentration of H_2 is $0.050 M$ and the concentration of N_2 is $0.025 M$, what is
	the concentration of NH ₃ ?

4. If the concentration of H_2 is decreased to $0.040\,M$, and the concentration of N_2 and the temperature remain unchanged, what is the new equilibrium concentration of NH_3 ? Is this consistent with the prediction mabe by Le Châtelier's Principle in question #1c above?