Name: _

Block: _____

Stoichiometry #3 (Limiting Reactant)

1. How many moles of H_2O would be produced if 3.5 mol H_2 react with 1.5 mol O_2 in the following reaction:

 $2\,H_2 + O_2 \longrightarrow 2\,H_2O$

2. If 12.0 moles of S_8 reacted with 100. moles of O_2 in the *unbalanced* equation: $S_8 + O_2 \longrightarrow SO_3$

Which reactant is limiting, and how much of the other reactant would be left over?

3. 325 g of H_2O is poured onto a 450 g block of sodium metal. What is the limiting reactant? How many liters of H_2 gas are produced at S.T.P.? The equation for this reaction is: $2 \operatorname{Na} + 2 \operatorname{H}_2O \longrightarrow 2 \operatorname{Na}OH + \operatorname{H}_2$

4. If 120 g of sand (SiO₂) is poured into 0.50 ℓ of 2.0 *M* hydrofluoric acid (HF), identify the limiting reactant and determine how much silicon tetrafluoride would be produced? The chemical equation for this reaction is:

 $SiO_2 + 4 HF \longrightarrow SiF_4 + 2 H_2O$

5. If you add approximately 5.0 g of H_2O to approximately 5.0 g of calcium carbide (CaC₂), the reaction produces enough acetylene gas to make a satisfyingly loud explosion. Identify the limiting reactant and determine how many liters of acetylene (C₂H₂) gas would have been produced at S.T.P., assuming the *unbalanced* equation (which you will need to balance first) is:

 $CaC_2 + H_2O \longrightarrow C_2H_2 + Ca(OH)_2$

(Remember that H_2O is $H^+ + OH^-$ in a chemical reaction.)

- 6. 3.27 g of Zn are reacted with 100. m ℓ of 1.00 M HCl in the reaction: Zn + 2 HCl \longrightarrow ZnCl₂ + H₂
 - (a) Determine which reactant is limiting.
 - (b) Determine the number of grams of ZnCl₂ that will be produced.
 - (c) If the reaction conditions are 0° C and 1 atm pressure (S.T.P.), determine the number of liters of H₂ gas that will be produced.
 - (d) If the non-limiting reactant is Zn, determine the mass in grams that will be left over.
 - (e) If the non-limiting reactant is HCl, determine the concentration (molarity) of the HCl after the reaction is complete. (Assume the volume does not change.)