Unit: Laboratory

Details

MA Curriculum Frameworks (2016): N/A

Mastery Objective(s): (Students will be able to...)

- Identify the significant figures in a number.
- Perform calculations and round the answer to the appropriate number of significant figures

Success Criteria:

- Be able to identify which digits in a number are significant.
- Be able to count the number of significant figures in a number.
- Be able to determine which places values will be significant in the answer when adding or subtracting.
- Be able to determine which digits will be significant in the answer when multiplying or dividing.
- Be able to round a calculated answer to the appropriate number of significant figures.
- Tier 2 Vocabulary: significant, round

Language Objectives:

• Explain the concepts of significant figures and rounding.

Notes:

Because it would be tedious to calculate the uncertainty for error for every calculation in chemistry, we often use significant figures (or significant digits) as a simple way to estimate and represent the uncertainty.

Significant figures are based on the following approximations:

- All stated values are rounded off so that the uncertainty is only in the last unrounded digit.
- Assume that the uncertainty in the last unrounded digit is ±1.
- The results of calculations are rounded so that the uncertainty of the result is only in the last unrounded digit and is assumed to be ±1.

	Significant rightes	r age. 47
Big Ideas	Details	Unit: Laboratory
	Note that using significant figures gives less information than stating	the
	measurement with its uncertainty. This is why, when you take meas	
	perform calculations in the laboratory, you will estimate the actual u	
	each measurement and calculate the uncertainty of your results. Ho	•
	homework problems and written tests, you will use significant figure	
	way to keep track of the approximate effects of uncertainty on your	answers.
	In the example on page 42, we rounded the number 1285.74 off to	the tens place
	resulting in the value of 1 290, because we couldn't show more preci	
	actually had.	
	In the number 1290, we would say that the first three digits are "sig	nificant",
	meaning that they are the part of the number that is not rounded of	f. The zero in
	the ones place is "insignificant," because the digit that was there wa	
	rounded.	
	significant figures (significant digits): the digits in a measured value	or calculated
	result that are not rounded off. (Note that the terms "significant	
	"significant digits" are used interchangeably.)	
	insignificant figures: the digits in a measured value or calculated res	ult that were
	"lost" (became zeroes before a decimal point or were cut off after	
	point) due to rounding.	

	Jighnicant rigures	Fage. 40
leas De	etails	Unit: Laboratory
	Identifying the Significant Digits	in a Number
	ne first significant digit is where the "measured" part o rst digit that is not zero.	f the number begins—the
	ne last significant digit is the last "measured" digit—the known.	e last digit whose true value
	 If the number doesn't have a decimal point, the <u>la</u> last digit that is not zero. (Anything after that has 	
	Example: If we round the number 234567 to the set 235000. (Note that because the digit after the was 5 or greater, so we had to "round up".) In the first three digits (the 2, 3, and 5) are the significan digits (the zeroes at the end) are the insignificant of the set of the	e "4" in the thousands place e rounded-off number, the t digits, and the last three
	 If the number has a decimal point, the last signific shown. (Anything rounded after the decimal poin 	
	Example: If we round the number 11.223344 to t would become 11.22. When we rounded the num the extra digits.	•
	 If the number is in scientific notation, it has a deci above rules tell us (correctly) that all of the digits l significant. 	•
In	the following numbers, the significant figures have be	en underlined:
	• <u>13</u> 000 • <u>6804</u>	.305 00
	• 0.0 <u>275</u> • <u>6.0</u> ×	10 ²³
	• 0.0 <u>150</u> • <u>3400.</u>	(note the decimal point at the end)
U	se this space for summary and/or additional notes:	

Mathematical Operations with Significant Figures

Addition & Subtraction

When adding or subtracting, calculate the total normally. Then identify the smallest place value where nothing is rounded. Round your answer to that place.

For example, consider the following problem.

|--|

Details

Big Ideas

pro	oblem:		<u>"sig figs" equivalent:</u>
+	123000 0.0075 <u>1650</u> 124650.0075 ▲	± 1000 ± 0.0001 _± 10 ± 1010.0001	123 ???.??? ? 0.007 5 <u>+ 1 65?.??? ?</u> 124 ???.??? ? (Check this digit for rounding)

In the first number (123 000), the hundreds, tens, and ones digit are zeros, presumably because the number was rounded to the nearest 1000. The second number (0.0075) is presumably rounded to the ten-thousandths place, and the number 1650 is presumably rounded to the tens place.

The first number has the largest uncertainty, so we need to round our answer to the thousands place to match, giving $125\ 000\ \pm\ 1\ 000$.

A silly (but correct) example of addition with significant digits is:

100 + 37 = 100

Multiplication and Division

When multiplying or dividing, calculate the result normally. Then count the total number of significant digits in the values that you used in the calculation. Round your answer so that it has the same number of significant digits as the value that had the *fewest*.

Consider the problem:

The answer (without taking significant digits into account) is $34.52 \times 1.4 = 48.328$

The number 1.4 has only two significant digits, so we need to round our answer so that it also has only two significant digits. This means we should round our answer to 48.

A silly (but correct) example of addition with significant digits is:

 $234 \times 1 = 200$

	Significant Figures	Page: 50
Big Ideas	Details	Unit: Laboratory
	Mixed Operations	
	For mixed operations, keep all of the digits until you're finished (so don't accumulate), but keep track of the last significant digit in each a line over it (even if it's not a zero). Once you have your final answ the correct number of significant digits. Don't forget to use the cor operations (PEMDAS)!	n step by putting ver, round it to
	For example:	
	137.4×52+120×1.77	
	(137.4×52)+(120×1.77)	
	7, 144.8 + 212.4 = 7, 357.2 = 7,400	
	Note that in the above example, we kept all of the digits until the e avoid introducing small rounding errors at each step, which can add change the final answer. Notice how, if we had rounded off the nu- step, we would have gotten the wrong answer:	l up to enough to
	137.4×52+120×1.77	
	(137.4×52)+(120×1.77)	
	$7,\overline{1}00+2\overline{1}0=7,\overline{3}10=7,300$	

What to Do When Rounding Doesn't Give the Correct Number of Significant Figures

If you have a different number of significant digits from what the rounding shows, you can place a line over the last significant digit, or you can place the whole number in scientific notation. Both of the following have <u>four</u> significant digits, and both are equivalent to writing $13,000 \pm 10$

13000

Details

• 1.300×10⁴

When Not to Use Significant Figures

Significant figure rules only apply in situations where the numbers you are working with have a limited precision. This is usually the case when the numbers represent measurements. <u>Exact</u> numbers have infinite precision, and therefore have an infinite number of significant figures. Some examples of exact numbers are:

- Pure numbers, such as the ones you encounter in math class.
- Anything you can count. (*E.g.*, there are 24 people in the room. That means exactly 24 people, not 24.0 ± 0.1 people.)
- Whole-number exponents in formulas. (*E.g.*, the area of a circle is πr^2 . The exponent "2" is a pure number.)

You should also avoid significant figures any time the uncertainty is likely to be substantially different from what would be implied by the rules for significant figures, or any time you need to quantify the uncertainty more exactly.

Summary

Significant figures are a source of ongoing stress among chemistry students. To make matters simple, realize that few formulas in chemistry involve addition or subtraction, so you can usually just apply the rules for multiplication and division: look at each of the numbers you were given in the problem. Find the one that has the fewest significant figures, and round your final answer to the same number of significant figures.

If you have absolutely no clue what else to do, round to three significant figures. You would have to measure quite carefully to have more than three significant figures in your original data, and three is usually enough significant figures to avoid unintended loss of precision, at least in a high school chemistry course. ©

Big Ideas	Details U	nit: Laboratory
	Homework Problems	
	 For each of the following, Underline the significant figures in the Write the assumed uncertainty as ± the appropriate quantity. 	e number and
	$57300 \pm 100 \leftarrow$ Sample problem with correct answer.	
	a. 13500	
	b. 26.0012	
	c. 01902	
	d. 0.00000025	
	e. 320.	
	f. 6.0×10^{-7}	
	g. 150.00	
	h. 10	
	i. 0.005 310 0	

Big Ideas Unit: Laboratory 2. Round off each of the following numbers as indicated and indicate the last significant digit if necessary. a. 13 500 to the nearest 1000 b. 26.0012 to the nearest 0.1 c. 1902 to the nearest 0.1 c. 1902 to the nearest 10 d. 0.000025 to the nearest 0.000 01 e. 320. to the nearest 10 f. 6.0 × 10 ⁻⁷ to the nearest 10 ⁻⁶ g. 150.00 to the nearest 100 h. 10 to the nearest 100			Significant Figures	Page: 53
 2. Round off each of the following numbers as indicated and indicate the last significant digit if necessary. a. 13 500 to the nearest 1000 b. 26.0012 to the nearest 0.1 c. 1902 to the nearest 10 d. 0.000 025 to the nearest 0.000 01 e. 320. to the nearest 10 f. 6.0 × 10⁻⁷ to the nearest 10⁻⁶ g. 150.00 to the nearest 100 	Big Ideas	Details		Unit: Laboratory
 b. 26.0012 to the nearest 0.1 c. 1902 to the nearest 10 d. 0.000 025 to the nearest 0.000 01 e. 320. to the nearest 10 f. 6.0 × 10⁻⁷ to the nearest 10⁻⁶ g. 150.00 to the nearest 100 				
 c. 1902 to the nearest 10 d. 0.000 025 to the nearest 0.000 01 e. 320. to the nearest 10 f. 6.0 × 10⁻⁷ to the nearest 10⁻⁶ g. 150.00 to the nearest 100 		a.	13 500 to the nearest 1000	
 d. 0.000 025 to the nearest 0.000 01 e. 320. to the nearest 10 f. 6.0 × 10⁻⁷ to the nearest 10⁻⁶ g. 150.00 to the nearest 100 		b.	26.0012 to the nearest 0.1	
e. 320. to the nearest 10 f. 6.0×10^{-7} to the nearest 10^{-6} g. 150.00 to the nearest 100		c.	1902 to the nearest 10	
f. 6.0×10^{-7} to the nearest 10^{-6} g. 150.00 to the nearest 100		d.	0.000025 to the nearest 0.000 01	
g. 150.00 to the nearest 100		e.	320. to the nearest 10	
		f.	6.0×10^{-7} to the nearest 10^{-6}	
h. 10 to the nearest 100		g.	150.00 to the nearest 100	
		h.	10 to the nearest 100	

		Significant rigules	Page: 54
Big Ideas	Details		Unit: Laboratory
		the following math problems and round your answer er of significant figures.	to the appropriate
	a.	3 521 × 220	
	b.	13580.160 ÷ 113	
		2.71828 + 22.4 - 8.31 - 62.4	
	L.	2.71020 + 22.4 - 0.51 - 02.4	
	d.	23.5 + 0.87 × 6.02 – 105 (Remember PEMDAS!)	
		, , , , , , , , , , , , , , , , , , ,	