Logarithms

Unit: Math & Measurement

MA Curriculum Frameworks (2016): SP5

Mastery Objective(s): (Students will be able to...)

• Use logarithms to solve for a variable in an exponent.

Success Criteria:

• Equations use logarithms to turn equations of the form $a^x = b$ into equations of the form $x \log(a) = \log(b)$.

Tier 2 Vocabulary: logarithm

Language Objectives:

• Explain what the logarithm function is used for.

Notes:

Details

The logarithm may well be the least well-understood function encountered in high school mathematics. In high school chemistry, logarithms are used for the pH function for measuring the strength of acids & bases (which we will cover at the end of the year).

The simplest way to understand logarithms is to start with the base ten logarithm. You can think of the (base ten) logarithm of a number as the number of zeroes after a number.

х	log ₁₀ (x)	
100 000	10 ⁵	5
10 000	10 ⁴	4
1 000	10 ³	3
100	10 ²	2
10	10 ¹	1
1	10 ⁰	0
0.1	10 ⁻¹	-1
0.01	10 ⁻²	-2
0.001	10-3	-3
0.000 1	10 ⁻⁴	-4
0.000 01	10 ⁻⁵	-5

As you can see from the above table, the logarithm of a number turns a set of numbers that vary exponentially (powers of ten) into a set that vary linearly.

Use this space for summary and/or additional notes:

Logarithms

Big Ideas	Details		0	LInit [.] M	ath & Measurement			
516 14245	You can get a visual sense of the logarithm function from the logarithmic number							
	line below:							
	3	5 7 9	30) 50 70 90	300 500 700 900			
	1 2	4 6 8 10	20	40 60 80 100 200	400 600 800 1000			
	Notice that the	<i>distance</i> from	1 to 10 is th	e same as the <i>distance</i>	from 10 to 100 and			
	from 100 to 1000. In fact, the relative distance to every number on this number							
		line is the logarithm of the number.						
		x	$\log_{10}(x)$	distance from beginni of number line	ing			
		10 ⁰	0	0				
		10 ^{0.5} ≈ 3.16	0.5	½ cycle				
		10 ¹ = 10	1	1 cycle				
		$10^2 = 100$	2	2 cycles				
		$10^3 = 1000$	3	3 cycles				
	The most useful into the linear p	mathematica art of the equ	l property o ation:	f logarithms is that the	y move an exponent			
		log ₁	$_{0}(10^{3}) = 3 \log$	$g_{10}(10) = (3)(1) = 3$				
	In fact, the logarithm function works the same way for any base, not just 10:							
	$\log_2(2^7) = 7 \log_2(2) = (7)(1) = 7$							
	(In this case, the word "base" means the base of the exponent.) The general equation is:							
	$\log_x(a^b) = b \log_x(a)$							
	This is a powerful precisely the pu	ul tool in solvi rpose of using	ng for the ex logarithms	ponent in an equation in most mathematical of	. This is, in fact, equations.			
	Use this space for	or summary a	nd/or additi	onal notes:				

			Logai	rithms				Page: 101
Big Ideas	Details					Unit: Ma	th & Mea	surement
	Sample prob	olem:						
	Q: Solve $3^x =$	15 for <i>x</i> .						
	A: Take the lo base impli	ogarithm o es that the	f both sic base is 1	les. (Note that .0.)	writing	"log" wit	hout supp	plying a
	$log(3^{x}) = log(3) = log(3)$	og(15) og(15) = 1.176 = 2.465						
	This is the	correct an	swer, be	cause 3 ^{2.465} = 15	5			
	A powerful too logarithmic gra you plot an ex logarithmic ("s graph paper th axis but not th The graph at th Notice where th the graph:	bl that follo aph paper ponential f semi-log") (hat has a lo e other), y he right is t the followi	ows from to solve e graph pa garithmi ou get a the funct ng points	this is using equations. If on semi- per (meaning c scale on one straight line. ion $y = 2^x$. s appear on	50 40 30 20 10 9			
		Domain	Range		8		/	
		1	2		6			
		2	4		5			
		3	8		4			
		4	16		3			
	Notice also tha intermediate v the graph show	at you can values. For ws that y =	use the g example 6.06.	raph to find e, at x = 2.6,	2	1	2 3	4 5

Use this space for summary and/or additional notes: