Gas Laws

Unit: Gases

Details

Big Ideas

MA Curriculum Frameworks (2016): HS-PS2-8(MA)

Mastery Objective(s): (Students will be able to...)

- Qualitatively describe the relationship between any two of the quantities: *number of particles, temperature, pressure,* and *volume* in terms of Kinetic Molecular Theory (KMT).
- Quantitatively determine the *number of particles, temperature, pressure,* or *volume* in a before & after problem in which one or more of these quantities is changing.

Success Criteria:

- Descriptions relate behavior at the molecular level to behavior at the macroscopic level.
- Solutions have the correct quantities substituted for the correct variables.
- Chosen value of the gas constant has the same units as the other quantities in the problem.
- Algebra and rounding to appropriate number of significant figures is correct.

Tier 2 Vocabulary: ideal, law

Language Objectives:

- Identify each quantity based on its units and assign the correct variable to it.
- Understand and correctly use the terms "pressure," "volume," and "temperature," and "ideal gas."
- Explain the placement of each quantity in the ideal gas law.

Labs, Activities & Demonstrations:

- Vacuum pump (pressure & volume) with:
 - \circ balloon (air vs. water)
- \circ shaving cream
- Absolute zero apparatus (pressure & temperature)
- Can crush (pressure, volume & temperature)

Big Ideas	Details	Unit: Gases
	Notes:	
	ideal gas: a gas that behaves as if each molecule acts independ kinetic-molecular theory. Specifically, this means the mole and move freely in straight lines at constant speeds. When collide, the collisions are perfectly elastic, which means the other with no energy or momentum lost.	lently, according to ecules are far apart, In the molecules ey bounce off each
	Most gases behave ideally except at temperatures and prevaporization curve on a phase diagram. (<i>I.e.,</i> gases stop be conditions are close to those that would cause the gas to conditions are close to those that would cause the gas to condition.)	ssures near the having ideally when ondense to a liquid or
	opperative Solid Liquid opperative Gas Temperature	

Big Ideas	Details Unit: Gases
	Note about Subscripts and Variables
	When variables appear more than once in an equation with different values each time, we use subscripts to group them. You have already seen this a few times in math, <i>e.g.</i> , in the formula for the slope of a line and the distance formula:
	slope: $m = \frac{y_2 - y_1}{x_2 - x_1}$ distance: $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
	In the above examples, the subscripts "1" and "2" are used to group the x and y values based on whether they refer to the first point (x_1, y_1) , or the second one (x_2, y_2) .
	In chemistry, we use subscripts the same way. For example, if a gas is heated, that means the temperature is changing. We refer to the starting temperature (temperature #1) as T_1 , and the ending temperature (temperature #2) as T_2 . The same concept applies to other variables as well, such as moles (<i>n</i>), volume (<i>V</i>), and pressure (<i>P</i>).
	Proportionalities
	directly proportional: if two quantities are <u>directly</u> proportional, as one increases, the other increases proportionately.
	If x and y are directly proportional, then $x \propto y$ which means $x = ky$ and $\frac{x}{y} = k$
	where <i>k</i> is a constant. You should notice that <i>x</i> and <i>y</i> are either <u>numerator and</u> <u>denominator</u> in a fraction, or are on <u>opposite sides</u> of the equals sign.
	inversely proportional: if two quantities are <i>inversely</i> proportional, as one increases, the other decreases proportionately.
	If x and y are inversely proportional, then $x \propto \frac{1}{y}$ which means $xy = k$ where k is
	a constant. You should notice that <i>x</i> and <i>y</i> are on the <u>same side</u> of the equals sign.

Gas Laws

Use this space for summary and/or additional notes:

Page: 129

Details

Big Ideas

Avogadro's Principle

In 1811, Italian physicist Amedeo Avogadro (whose full name was Lorenzo Romano Amedeo Carlo Avogadro di Quaregna e di Cerreto) published the principle that equal volumes of an ideal gas at the same temperature and pressure must contain equal numbers of particles.

What did we do?	What happened?	What are the molecules doing?	Conclusion
put more (moles of) air into a balloon <i>n</i> ↑	the volume of the balloon got larger V↑	crowding each other → pushing each other farther away	<i>n</i> and <i>V</i> are directly proportional. $\frac{V}{n}$ = constant

If the pressure and temperature are constant, then for an ideal gas:

$$\frac{V_1}{N_1} = \frac{V_2}{N_2}^*$$

Because it is almost always more convenient to work with moles of gas (n) rather than particles (N), we can rewrite Avogadro's principle as:

$$\frac{V_1}{n_1} = \frac{V_2}{n_2}$$

* Avogadro's principle is usually stated $\frac{n_1}{V_1} = \frac{n_2}{V_2}$. I have inverted it in these notes so that the quantities in the numerator and denominator are the same as the quantities in the

numerator and denominator of the combined gas law.

Big Ideas

Boyle's Law

In 1662, British physicist and chemist Robert Boyle published his findings that the pressure and volume of a gas were inversely proportional.

What did we do?	What happened?	What are the molecules doing?	Conclusion
decrease pressure by putting a balloon in a vacuum chamber P↓	the volume of the air inside the balloon increased $v \uparrow$	colliding with less force → pushing each other less far away	P and V are inversely proportional. PV = constant

Therefore, if the temperature and the number of particles of gas are constant, then for an ideal gas:

 $P_1V_1 = P_2V_2$

(Note that by convention, gas laws use subscripts "1" and "2" instead of "i" and "f".)

Charles' Law

In the 1780s, French physicist Jacques Charles discovered that the volume and temperature of a gas were directly proportional.

What did we do?	What happened?	What are the molecules doing?	Conclusion
cool gas by putting a soda can full of very hot air into cool water $T\downarrow$	the volume of the air got smaller and crushed the can $V\downarrow$	moving more slowly → pushing each other less far away	V and T are directly proportional. $\frac{V}{T} = \text{constant}$

If pressure and the number of particles are constant, then for an ideal gas:

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$

Gay-Lussac's Law

In 1702, French physicist Guillaume Amontons discovered that there is a relationship between the pressure and temperature of a gas. However, precise thermometers were not invented until after Amontons' discovery, so it wasn't until 1808, over a century later, that French chemist Joseph Louis Gay-Lussac confirmed this law mathematically. The pressure law is most often attributed to Gay-Lussac, though some texts refer to it as Amontons' Law.

What did we do?	What happened?	What are the molecules doing?	Conclusion
increase temperature by heating a metal sphere full of air $T\uparrow$	the pressure of the air increased ₽↑	moving faster → colliding with more force	<i>P</i> and <i>T</i> are directly proportional. $\frac{P}{T} = \text{constant}$

If volume and the number of particles are constant, then for an ideal gas:

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

The Combined Gas Law

We can combine each of the above principles. When we do this (keeping P and V in the numerator and n and T in the denominator for consistency), we get following relationship for an ideal gas:

$$\frac{P_1V_1}{n_1T_1} = \frac{P_2V_2}{n_2T_2} = \text{constant}$$

Note, however, that in most problems, the number of moles of gas remains constant. This means $n_1 = n_2$ and we can cancel it from the equation, which gives:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

This equation is called the "combined gas law", which is used to solve most "before/after" problems involving ideal gases.

Use this space for summary and/or additional notes:

Big Ideas

Details

Big Ideas	Details Unit: Gases
	When using the combined gas law, any quantity that is not changing may be cancelled out of the equation. (If a quantity is not mentioned in the problem, you can assume that it is constant and may be cancelled.)
	This brings us to an important point about science problems: <u>If something is not</u> <u>mentioned in a problem</u> , always assume that it doesn't affect the problem. On a standardized test like MCAS or an AP [®] test, it's usually best to state those assumptions explicitly, because if your assumption is valid and you do the rest of the problem correctly, you will almost always receive some credit, even if your assumption was different from what the person who wrote the problem intended.
	For example, suppose a problem doesn't mention anything about temperature. That means T is constant and you can cancel it. When you cancel T from both sides of the combined gas law, you get:
	$\frac{P_1V_1}{\mathcal{X}_1} = \frac{P_2V_2}{\mathcal{X}_2}$ which simplifies to $P_1V_1 = P_2V_2$ (Boyle's Law)
	Solving Problems Using the Combined Gas Law
	You can use this method to solve any "before/after" gas law problem:
	1. Determine which variables you have
	2. Determine which values are <i>initia1</i> (#1) vs. <i>final</i> (#2).
	 Start with the combined gas law and cancel any variables that are explicitly not changing or omitted (assumed not to be changing).
	 Substitute your numbers into the resulting equation and solve. (Make sure all initial and final quantities have the same units, and don't forget that temperatures <u>must</u> be in Kelvin!)

Big Ideas	Det	ails		Unit: Gases
	Sample problem:			
	Q:	Ag to 3	as has a temperature of 25 °C and a pressure of 85 °C, what will the new pressure be?	1.5 bar. If the gas is heated
	A:	1.	Find which variables we have.	
			We have two temperatures (25 $^{\circ}\text{C}$ and 35 $^{\circ}\text{C}$), a and the new pressure that we're looking for).	nd two pressures (1.5 bar
		2.	Find the action being done on the gas ("heated about the gas <i>before</i> the action is time "1", and the gas <i>after</i> the action is time "2".	"). Anything that was true I anything that is true about
			Time 1 ("before"):	<u>Time 2 ("after")</u> :
			<i>P</i> ₁ = 1.5 bar	$P_2 = P_2$
			<i>T</i> ₁ = 25 °C + 273 = 298 K	<i>T</i> ₂ = 35 °C + 273 = 308 K
		3.	Set up the formula. We can cancel volume (<i>V</i>), doesn't mention it:	because the problem
			$\frac{P_1 Y_1}{T_1} = \frac{P_2 Y_2}{T_2} \text{ which gives us } \frac{P_1}{T_1} = \frac{P_2}{T_2} \text{ (Gay)}$	-Lussac's Law)
		4.	Plug in our values and solve: $\frac{1.5 \text{ bar}}{298 \text{ K}} = \frac{P_2}{308 \text{ K}} \longrightarrow P_2$	= 1.55 bar

Gas Laws

Big Ideas	Details Unit: Gases
	Homework Problems
	Solve these problems using one of the gas laws in this section. Remember to convert temperatures to Kelvin!
	 A sample of oxygen gas occupies a volume of 250. mL at a pressure of 740. torr. What volume will it occupy at 800. torr?
	Answer: 231.25 mL
	 A sample of O₂ is at a temperature of 40.0 °C and occupies a volume of 2.30 L. To what temperature should it be raised to occupy a volume of 6.50 L?
	Answer: 612 °C
	 H₂ gas was cooled from 150. °C to 50. °C. Its new pressure is 750 torr. What was its original pressure?
	Answer: 980 torr
	4. A 2.00 L container of N_2 had a pressure of 3.20 atm. What volume would be necessary to decrease the pressure to 98.0 kPa?
	(Hint: notice that the pressures are in different units. You will need to convert one of them so that both pressures are in either atm or kPa.)
	Answer: 6.62 L

	Gas Laws	Page: 136
Big Ideas	Details	Unit: Gases
	5. A sample of air has a volume of 60.0 mL at S.T.P. What volume sample have at 55.0 °C and 745 torr?	will the
	Answer: 73.5 mL	
	6. N ₂ gas is enclosed in a tightly stoppered 500. mL flask at 20.0 °C The flask, which is rated for a maximum pressure of 3.00 atm, i 680. °C. Will the flask explode?	C and 1 atm. s heated to
	Answer: $P_2 = 3.25$ atm. Yes, the flask will explode.	
	7. A scuba diver's 10. L air tank is filled to a pressure of 210 bar at temperature of 32.0 °C. When the diver is breathing the air un water temperature is 8.0 °C, and the pressure is 2.1 bar.	a dockside: derwater, the
	a. What volume of air does the diver use?	
	Answer: 921 L	
	b. If the diver uses air at the rate of 8.0 L/min, how long will last?	the diver's air
	Answer: 115 min	