Unit: Gases

Details

MA Curriculum Frameworks (2016): HS-PS1-7

Mastery Objective(s): (Students will be able to...)

• Calculate partial pressures based on conservation of matter.

Success Criteria:

- Solutions have the correct quantities substituted for the correct variables.
- Mole fractions are paired correctly with their partial pressures.
- If the problem requires the ideal gas law, chosen value of the gas constant has the same units as the other quantities in the problem.
- Algebra and rounding to appropriate number of significant figures is correct.

Tier 2 Vocabulary: mole

Language Objectives:

• Describe the pairing of each gas with its mole fraction and pressure.

Notes:

<u>Partial Pressure</u>: the partial pressure of a gas is the amount of pressure that would result from *only* the molecules of that gas. The partial pressure of a substance is denoted by the variable *P* (for pressure) and the chemical formula of the substance as a subscript. For example, the partial pressure of carbon dioxide in a sample would be denoted by P_{CO_3} .

<u>Dalton's Law of Partial Pressures</u>: the sum of all of the partial pressures in a sealed container equals the total pressure.

$$P = P_T = P_1 + P_2 + P_3 + \dots$$

(To make things more clear, we will use P_T to mean the total pressure.)

<u>mole fraction</u> (χ): the fraction of the total moles (or molecules) that are the compound of interest. For example, if we have 20 moles of gas, and 9 moles are N₂, the mole fraction of N₂ is:

$$\chi_{N_2} = \frac{9 \,\text{mol}\,N_2}{20 \,\text{mol}\,\text{total}} = 0.45$$

Big Ideas

Details

Partial Pressures

Suppose we had the following tank, with a total pressure of 1.00 atm:

$$\begin{bmatrix} & & & & O_2 & & \\ & N_2 & O_2 & N_2 & & N_2 & \\ & O_2 & & & & N_2 & \\ & O_2 & & & & N_2 & \\ & N_2 & O_2 & & N_2 & & \\ & N_2 & O_2 & & O_2 & O_2 & \\ \end{bmatrix}$$

If we ignore all of the molecules except for nitrogen, the tank would look like this:

 N_2

 N_2

 N_2

 N_2

 N_2

 $P_{N_2} = \chi_{N_2} P_T$

$$P_{N_2} = (0.45)(1 \text{ atm}) = 0.45 \text{ atm}$$

Similarly, because 55 % of the molecules are oxygen, this means:

 N_2

 N_2

 $P_{O_2} = \chi_{O_2} P_T$ $P_{O_2} = (0.55)(1 \text{ atm}) = 0.55 \text{ atm}$

Note that the two partial pressures add up to the total pressure:

$$P_{\rm T} = P_{\rm N_2} + P_{\rm O_2} = 0.45$$
 atm + 0.55 atm = 1 atm

$$\chi_{0_2} = 0.55$$

 $_{0_2} = (0.55)(1 at)$

Using Dalton's Law with the Ideal Gas Law

Recall the two tanks from our example. Assuming N_2 and O_2 are behaving like ideal gases, the ideal gas law must be true in both tanks.

In other words, the ideal gas law can be used either with the total moles and total pressure, or with the moles of one specific gas and the partial pressure of that gas.

Use this space for summary and/or additional notes:

Big Ideas

Details

Big Ideas	Details							Unit
	Vapor Pressure							
	<u>vapor pressure</u> (P_{vap}) the partial pressure of a substance due to evaporation.							
	Because liquids are continually forming and breaking bonds, when a liquid mo at the surface breaks its bonds with other liquids, it can escape the attractive f of the other liquid molecules and become a vapor molecule. The tendency for molecules to do this, when expressed as a partial pressure, is called the vapor pressure.							
	Vapor pressure vapor pressure molecules have boiling point, th pressure.	is a fund increase enough ne vapor	ction of the es with tem energy to pressure n	e kinetic iperature enter th nust be e	energy of e. At the e gas pha equal to t	the mol boiling p ise. This he ambi	lecules, w point, all c means th ent (atmc	hich mea of the oat at the ospheric)
	The following ta	able sho	ws the vap	or press	ure of wa	ter at di	fferent te	mperatu
	Vapor Pressure of Water							
		Temp (°C)	P _{vap} (kPa)	Temp (°C)	P _{vap} (kPa)	Temp (°C)	P _{vap} (kPa)	
		0.01	0.61173	30	4.2455	70	31.176	
		1	0.65716	35	5.6267	75	38.563	
		4	0.81359	40	7.3814	80	47.373	
		5	0.87260	45	9.5898	85	57.815	
		10	1.2281	50	12.344	90	70.117	
		15	1.7056	55	15.752	95	84.529	
		20	2.3388	60	19.932	100	101.32	
		25	3.1691	65	25.022	105	120.79	
	Relative humidi vapor pressure.	ty is the	actual par	tial pres	sure of w	ater in a	ir as a per	centage
	For example, su pressure of air a would be 50%.	ippose a at 30 °C i	ir at 30 °C is 5.6 kPa.	(86 °F) ha 2.8 kPa	as a partia is half of !	al pressu 5.6 kPa, s	re of 2.8 so the rel	kPa. The ative hun

olecule forces

of its

vapor nidity

		i ai tiai i i Coourc	- J Fage	. 145
Big Ideas	Details		Unit: G	iases
	Sample problem	1:		
	A 12.0 L tank of gas the partial pressure are in the tank? Ho	has a temperature of 30 of oxygen in the tank is (w many total moles of ga	.0 °C and a total pressure of 1.75 atr D.350 atm, how many moles of oxyg as are in the tank?	n. If en
	Solution:			
	For oxygen:			
		<i>P</i> ₀₂ = 0.350 atm	n = n	
		V = 12.0 L	$R = 0.0821 \frac{L \cdot atm}{mol \cdot K}$	
			T = 30.0 °C + 273 = 303.0 K	
		$P_{O_2}V = n$	₀₂ R <i>T</i>	
		(0.350)(12.0) = <i>n</i> ₀₂	(0.0821)(303.0)	
		n ₀₂ = 0.16	9 mol	
	You could figure ou the total moles:	t the total moles two way	ys. One is to use the ideal gas law o	n
		<i>P</i> = 1.75 atm	n = n	
		V = 12.0 L	$R = 0.0821 \frac{L \cdot atm}{mol \cdot K}$	
			T = 30.0 °C + 273 = 303.0 K	
		<i>PV</i> = <i>n</i>	R <i>T</i>	
		(1.75)(12.0) = n (0)	.0821)(303.0)	
		<i>n</i> = 0.844	mol	

Big Ideas	Details Unit: Gases
	The other way to find the total moles is to use the mole fraction and the partial pressure:
	$P_{O_2} = \chi_{O_2} P_T$
	We know that
	<i>P</i> ₀₂ = 0.350 atm
	<i>P</i> _T = 1.75 atm
	0.350 atm = $\chi_{0_2}(1.75 \text{ atm})$
	$\chi_{\rm O_2} = \frac{0.350{\rm atm}}{1.75{\rm atm}} = 0.200$
	Now that we know the mole fraction of O_2 , we can figure out the total moles:
	$\chi_{O_2} = \frac{n_{O_2}}{n_{T}}$ $0.200 = \frac{0.169 \text{ mol } O_2}{n_{T}}$ $n_{T} = \frac{0.169}{0.200} = 0.845 \text{ mol}$
	Homework Problems
	 A 5 L container contains 0.125 mol of O₂ and 1.000 mol of He at 65 °C. What is the partial pressure of each gas? What is the total pressure?
	Answer: 6.24 atm

Big Ideas	Details Unit: Gases
	2. A 50 L gas cylinder contains 186 mol of N ₂ and 140 mol of O ₂ . If the temperature is 24 °C, what is the total pressure in the cylinder?
	Answer: 159 atm 3. A sample of O ₂ gas is collected by water displacement at 25 °C. If the atmospheric pressure in the laboratory is 100.7 kPa and the vapor pressure of water is 3.17 kPa at 25 °C, what is the partial pressure of the O ₂ gas in the sample?
	 Answer: 97.5 kPa 4. Two flasks are connected with a stopcock. The first flask has a volume of 5 liters and contains nitrogen gas at a pressure of 0.75 atm. The second flask has a volume of 8 & and contains oxygen gas at a pressure of 1.25 atm. When the stopcock between the flasks is opened and the gases are free to mix, what will the (total) pressure be in the resulting mixture?
	Answer: 1.058 atm