Unit: Nuclear Chemistry

MA Curriculum Frameworks (2016): N/A (HS-PS1-8 in physics frameworks) **Mastery Objective(s):** (Students will be able to...)

- Determine the products of alpha, beta-minus, and beta-plus radioactive decay and electron capture.
- Predict the most likely form of radioactive decay for an isotope based on its position relative to the band of stability on a proton-neutron graph.

Success Criteria:

- Form of radioactive decay correctly identified.
- Products of decay correctly identified.
- Correct nuclear equation.

Tier 2 Vocabulary: decay

Language Objectives:

- Explain the processes of alpha, beta-plus and beta-minus radioactive decay and electron capture.
- Understand and correctly use the terms "radioactive decay," "nuclear instability," "alpha decay," "beta decay," "gamma rays," and "penetrating power."

Notes:

<u>nuclear instability</u>: When something is unstable, it is likely to change. If the nucleus of an atom is unstable, changes can occur that affect the number of protons and neutrons in the atom.

Note that when this happens, the nucleus ends up with a different number of protons. This causes the atom to literally turn into an atom of a different element. When this happens, the physical and chemical properties instantaneously change into the properties of the new element!

<u>radioactive decay</u>: the process by which the nucleus of an atom changes, transforming the element into a different element or isotope.

<u>nuclear equation</u>: an equation describing (through chemical symbols) what happens to an atom as it undergoes radioactive decay.

Use this space for summary and/or additional notes:

	Radioactive Decay	Page: 179		
Big Ideas	Details	Unit: Nuclear Chemistry		
	Causes of Nuclear Instability			
	Two of the causes of nuclear instability are:			
	Size because the strong force acts over a limited distance, when nuclei get too large (more than 82 protons), it is no longer possible for the strong force to keep the nucleus together indefinitely. The form of decay that results from an atom exceeding its stable size is called alpha (α) decay.			
	The Weak Nuclear Force			
	The weak force is caused by the exchange (absorption and/or emission) of W and Z bosons. This causes a down quark to change to an up quark or vice-versa. The change of quark flavor has the effect of changing a proton to a neutron, or a neutron to a proton. (Note that the action of the weak force is the only known way of changing the flavor of a quark.) The form of decay that results from the action of the weak force is called beta (β) decay.			
	<u>band of stability</u> : isotopes with a ratio of protons to neutrons that results in a stabl nucleus (one that does not spontaneously undergo radioactive decay). This observation suggests that the ratio of up to down quarks within the nucleus is somehow involved in preventing the weak force from causing quarks to change flavor.			
	too much mass;			
	130— <i>α</i> dec	cay likely		
	120	:		
	110—			
	× 100–			
	g = 90 - excess neutrons; $\beta = 0$			
	$80 - \text{decay likely} \qquad \beta_+$	ess protons; decay and		
	elec	tron capture		
		likely		
	< 100 − su 90 − excess neutrons; β− exce 80 − decay likely β+ 70 − elect 60 − 80 − 40 −			
	30 -			
	20 –			
	10 -			
		Atomic Number, Z		
	Lise this space for summary and/or additional notes:			

Use this space for summary and/or additional notes:

	rage. 100	
Big Ideas	Details Unit: Nuclear Chemistry	
alpha (α) decay: a type of radioactive decay in which the nucleus loses tw		
	and two neutrons (an alpha particle). An alpha particle is a ${}_{2}^{4}\text{He}^{2+}$ ion (the	
	nucleus of a helium-4 atom), with two protons, a mass of 4 amu, and a charge of +2. For example:	
	Atoms are most likely to undergo alpha decay if they have an otherwise stable proton/neutron ratio but a large atomic number. Alpha decay has never been observed in atoms with an atomic number less than 52 (tellurium), and is rare in elements with an atomic number less than 73 (tantalum).	
	<u>Net effects of α decay:</u>	
	 Atom loses 2 protons and 2 neutrons (atomic number goes down by 2 and mass number goes down by 4) 	
	• An α particle (a ${}_{2}^{4}\text{He}^{+2}$ ion) is ejected from the nucleus at high speed.	
	beta minus (β -) decay: a type of radioactive decay in which a neutron is converted	
	to a proton and the nucleus ejects a high speed electron (${}^0_{-1}e$).	
	Note that a neutron consists of one up quark and two down quarks (udd), and a proton consists of two up quarks and one down quark (uud). When β - decay occurs, the weak force causes one of the quarks changes its flavor from down to up, which causes the neutron (uud) to change into a proton (udd). Because a proton was gained, the atomic number increases by one. However, because the proton used to be a neutron, the mass number does not change. For example:	
	$^{32}_{15}P \rightarrow ^{32}_{16}S + ^{0}_{-1}e$	
	Atoms are likely to undergo β - decay if they have too many neutrons and not enough protons to achieve a stable neutron/proton ratio. Almost all isotopes that are heavier than isotopes of the same element within the band of stability (because of the "extra" neutrons) undergo β - decay.	
	<u>Net effects of β- decay:</u>	
	 Atom loses 1 neutron and gains 1 proton (atomic number goes up by 1; mass number does not change) 	
	• A β - particle (an electron) is ejected from the nucleus at high speed.	
	Note that a β - particle is assigned an atomic number of -1. This does not mean an electron is some sort of "anti-proton". The -1 is just used to make the equation for the number of protons work out in the nuclear equation.	

Use this space for summary and/or additional notes:

	Radioactive Decay Page:		
ig Ideas	Details Unit: Nuclear Chemi		
	<u>beta plus (β+) decay</u> : a type of radioactive decay in which a proton is converted to a proton and the nucleus size to a birth encoder proton (negitive β).		
	neutron and the nucleus ejects a high speed antielectron (positron, ${}_{_{+1}}^{^{0}}e$).		
	With respect to the quarks, β + decay is the opposite of β - decay When β + decay occurs, one of the quarks changes its flavor from up to down, which changes the proton (uud) into a neutron (udd). Because a proton was lost, th atomic number decreases by one. However, because the neutron used to be proton, the mass number does not change. For example:		
	$^{23}_{12}Mg \rightarrow ^{23}_{11}Na + ^{0}_{+1}e$		
	Atoms are likely to undergo β + decay if they have too many protons and not enough neutrons to achieve a stable neutron/proton ratio. Almost all isotop that are lighter than the isotopes of the same element that fall within the ba of stability ("not enough neutrons") undergo β + decay.		
	Net effects of β + decay:		
	 Atom loses 1 proton and gains 1 neutron (atomic number goes down by 1; mass number does not change) 		
	 A β+ particle (an antielectron or positron) is ejected from the nucleus at his speed. 		
	electron capture (sometimes called "K-capture"): when the nucleus of the atom "captures" an electron from the innermost shell (the K-shell) and incorporate into the nucleus. This process is exactly the reverse of β - decay; during elect capture, a quark changes flavor from up to down, which changes a proton (u into a neutron (udd):		
	$^{23}_{12}Mg + ^{0}_{-1}e \rightarrow ^{23}_{11}Na$		
	Note that β + decay and electron capture produce the same products. Electron capture can sometimes (but not often) occur without β + decay. However, β -decay is <u>always</u> accompanied by electron capture.		
	Atoms are likely to undergo electron capture (and usually also β + decay) if the have too many protons and not enough neutrons to achieve a stable neutron/proton ratio. Almost all isotopes that are lighter than the isotopes of the same element that fall within the band of stability undergo electron capture, and usually also β + decay.		
	Net effects of electron capture:		
	• An electron is absorbed by the nucleus.		
	 Atom loses 1 proton and gains 1 neutron (atomic number goes down by 1; 		

	Raulua	active Decay	Page: 182	
Big Ideas	Details		Unit: Nuclear Chemistry	
	 gamma (γ) rays: most radioactive decay produces energy. Some of that energy emitted in the form of gamma rays, which are very high energy photons of electromagnetic radiation. (Radio waves, visible light, and X-rays are other types of electromagnetic radiation.) Because gamma rays are waves (which have no mass), they can penetrate far into substances and can do a lot of damage. Because gamma rays are not particles, emission of gamma rays not change the composition of the nucleus. All of the types of radioactive decay mentioned in these notes also produ rays. This means to be complete, we would add gamma radiation to each radioactive decay equations described above: 			
	$^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$	$2 + {}^{0}_{0}\gamma$ ${}^{32}_{15}P$	$^{32}_{15}P \rightarrow ^{32}_{16}S + ^{0}_{-1}e + ^{0}_{0}\gamma$	
	$^{23}_{12}Mg \rightarrow ^{23}_{11}Na + ^{0}_{+1}e + ^{0}_{0}\gamma$		$^{23}_{12}Mg + ^{0}_{-1}e \rightarrow ^{23}_{11}Na + ^{0}_{0}\gamma$	
		stance is directly related to the tage of the senter of the senteroof the senter of the senter of the senter of the senter of th	-	
	lightest	·	heaviest	
	fastest		slowest	
	most penetrating power α 📽 β • γ	paper aluminium	least penetrating power	
		stances (such as lead) do a be ssions. This is why lead is co radioactive substances.		

Use this space for summary and/or additional notes: