Half-Life

Unit: Nuclear Chemistry

Details

Big Ideas

MA Curriculum Frameworks (2016): N/A (HS-PS1-8 in physics frameworks) **Mastery Objective(s):** (Students will be able to...)

- Determine the amount of radioactive material remaining after an integer number of half-lives.
- Determine the amount of time that has elapsed based on the fraction of radioactive material remaining (*e.g.*, carbon dating).

Success Criteria:

- Solutions use the appropriate equation for the information given.
- Solutions have the correct quantities substituted for the correct variables.
- Algebra and rounding to appropriate number of significant figures is correct.

Tier 2 Vocabulary: half-life, decay

Language Objectives:

• Explain how exponential decay works.

Notes:

The atoms of radioactive elements are unstable, and they spontaneously decay (change) into atoms of other elements.

For any given atom, there is a certain probability, P, that it will undergo radioactive decay in a given amount of time. The half-life, τ , is how much time it would take to have a 50 % probability of the atom decaying. If you start with n atoms, after one half-life, half of them (0.5n) will have decayed.

Amount of Material Remaining

If we start with 32 g of ⁵³Fe, which has a half-life (τ) of 8.5 minutes, we would observe the following:

# minutes	0	8.5	17	25.5	34
# half lives	0	1	2	3	4
amount left	32 g	16 g	8 g	4 g	2 g

Use this space for summary and/or additional notes:

Half-Life

		11	all-Li					Page: 189
Big Ideas	Details						Unit: Nuclear Chemistry	
	Finding the Time that has Passed (integer number of half-lives)							
	If the amount you started with divided by the amount left is an exact power of two, you have an integer number of half-lives and you can make a table.							
	Sample problem:							
	Q: If you started with 64 g of ¹³¹ I, how long would it take until there was only 4 g remaining? The half-life (τ) of ¹³¹ I is 8.07 days.							
	A: $\frac{64}{4} = 16$ which is a power of 2, so we can simply make a table:							
		# half lives	0	1	2	3	4	
		amount remaining	64 g	32 g	16 g	8 g	4 g	
	From the ta	ible, after 4 hal	lf-lives,	we have	4 g rem	naining.		
	The half-life ($ au$) of ¹³¹ I is 8.07 days.							
	8.07 × 4 = 32.3 days							
	Finding the amount remaining and time that has passed for a non-integer number of half-lives requires logarithms, and is beyond the scope of this course.							
	Homework Problems For these problems, you will need to use half-life information from "Table U. Selected Radioisotopes" on page 514 of your Chemistry Reference Tables.							
	 If a lab had 128 g of ³H waste 49 years ago, how much of it would be left today? (Note: you may round off to a whole number of half-lives.) 							
	Answer	:8g						

Use this space for summary and/or additional notes:

Big Ideas	Details	Unit: Nuclear Chemistry
	2.	Suppose a student stole a 20. g sample of ⁴² K at 8:30am on Friday. When the student was called down to the vice principal's office on Monday at the convenient time of 10:54am, how much of the ⁴² K was left?
		Answer: 0.31 g
	3.	If a school wants to dispose of small amounts of radioactive waste, they can store the materials for ten half-lives, and then dispose of the materials as regular trash.
		a. If we had a sample of ³² P, how long would we need to store it before disposing of it?
		 Answer: 143 days b. If we had started with 64 g of ³²P, how much ³²P would be left after ten half-lives? Approximately what fraction of the original amount would be left?
		Answer: 0.063 g; approximately $\frac{1}{1000}$ of the original amount.
	4.	If the carbon in a sample of human bone contained only one-fourth of the expected amount of ¹⁴ C, how old is the sample?
		(Hint: pretend you started with 1 g of $^{\rm 14}{\rm C}$ and you have 0.25 g remaining.)
		Answer: 11 460 years

Use this space for summary and/or additional notes: