Polyatomic Ions

Unit: Nomenclature & Formulas

MA Curriculum Frameworks (2016): HS-PS2-6

Mastery Objective(s): (Students will be able to...)

• Write chemical formulas that include polyatomic ions.

Success Criteria:

- Subscripts are chosen so that positive and negative charges are balanced (equal).
- Formulas for polyatomic ions are in parentheses if more than one is needed.

Tier 2 Vocabulary: bond, charge

Language Objectives:

• Explain the process and necessity of balancing charges.

Notes:

<u>polyatomic ion</u>: a group of atoms that are bonded to each other that behave chemically like a single ion. A polyatomic ion always has a specific name, chemical formula, and charge.

For example: the sulfate ion has the chemical formula SO_4^{2-} . It is made of one sulfur atom and 4 oxygen atoms. Chemically, it behaves like a single atom with a -2 charge.

The formula of a polyatomic ion never changes!

I.e., the sulfate ion is *always* SO_4^{2-} , and the 4 is an important part of the formula. If you wrote SO_2^{2-} instead, you would be talking about the hyposulfite ion instead of the sulfate ion—a different polyatomic ion with different chemical properties.

Use this space for summary and/or additional notes:

If a compound contains a polyatomic ion, you write the formula for the polyatomic ion, *including the subscript numbers*, in the place where the ion goes. For example, a compound with Na^+ and $SO_4^{2^-}$ would simply be Na_2SO_4 .

Balancing Charges with Polyatomic Ions

If you need more than one of a polyatomic ion in a chemical formula, put the entire polyatomic ion, *including any subscript numbers*, in parentheses, and put the number that tells how many ions you need outside the parentheses.

For example, to balance the compound made from AI^{3+} and SO_4^{2-} , you need 2 AI^{3+} ions and 3 SO_4^{2-} ions. The formula is:

 $AI_2(SO_4)_3$

Note: there are positive and negative polyatomic ions. A compound can have either, neither, or both kinds. For example, if you had a compound made from the positive ion ammonium (NH_4^+) and the negative ion sulfate (SO_4^{2-}), the compound would have the formula:

 $(NH_4)_2SO_4$

Determining the Number of Atoms in a Formula

The subscripts tell you how many you have of *whatever came immediately before the subscript*. If the thing before the subscript is an element, as in $CaCl_2$, the 2 tells us that we have 2 Cl atoms. There's no subscript after Ca, so this means we have only 1 Ca atom.

If the thing before the subscript is parentheses, as in $Al_3(SO_4)_2$, the 3 tells us that we have 3 Al atoms, the 2 outside the parentheses tells us that we have 2 entire SO_4 ions. This means we really have 2 atoms of S and 2 × 4 = 8 atoms of O.

Sample Problem:

How many hydrogen atoms are in the compound $(NH_4)_2 HPO_4$?

We have $2 \times 4 = 8$ from the two NH₄ ions, plus 1 from the HPO₄ ion, giving us a total of 9 hydrogen atoms.

Use this space for summary and/or additional notes:

Big Ideas

Details

Polyatomic Ions

Big Ideas

Details

Table of Polyatomic Ions					
ion	formul a	ion	formula	ion	formula
americyl	AmO ₂ ²⁺	acetate	CH₃COO -	tetraborate	B ₄ O ₇ ²⁻
carbonyl	CO ₂ ²⁺	amide	$\rm NH_2^-$	carbide	C ₂ ²⁻
thiocarbonyl	CS ₂ ²⁺	hydroxylamide	NHOH⁻	carbonate	CO ₃ ²⁻
chromyl	CrO ₂ ²⁺	azide	N_3^-	chromate	CrO ₄ ²⁻
neptunyl	NpO ₂ ²⁻	hydrazide	$N_2H_3^-$	dichromate	$Cr_2O_7^{2-}$
plutoryl	PuO ₂ ²⁺	bromate	BrO₃ [−]	imide	NH ²⁻
seleninyl	SeO ²⁺	chlorate	ClO₃ [−]	molybdate	MoO ₄ ²⁻
selenoyl	SeO ₂ ²⁺	cyanide	CN⁻	peroxide	O ₂ ²⁻
thionyl/sulfinyl	SO ²⁺	cyanate	OCN⁻	oxalate	$C_2O_4^{2-}$
sulfonyl/sulfuryl	SO ₂ ²⁺	thiocyanate	SCN⁻	phthalate	$C_8H_4O_4{}^2$
uranyl	UO ²⁺	selenocyanate	SeCN⁻	selenite	SeO4 ²⁻
vanadyl	V0 ²⁺	tellurocyanate	CH₃S⁻	silicate	SiO ₃ ²⁻
ammonium	NH_4^+	hydroxide	OH⁻	sulfate	SO4 ²⁻
hydronium	H₃O⁺	iodate	1O ₃ -	thiosulfate	$S_2O_3^{2-}$
iodyl	IO_2^+	methanolate	CH₃O⁻	dithionate	$S_2O_4^{2-}$
nitrosyl	NO⁺	methanethiolate	CH₃S⁻	silicate	SiO ₃ ²⁻
thionitrosyl	NS⁺	ethanolate	C₂H₅O⁻	borate	BO ₃ ³⁻
phosphoryl	PO⁺	permanganate	MnO₄⁻	arsenate	AsO4 ³⁻
thiophosphoryl	PS⁺	nitrate	NO₃ [−]	phosphate	PO4 ³⁻
phosphor	PO_2^+	superoxide	O ₂ ⁻	orthosilicate	SiO4 ⁴⁻

Use this space for summary and/or additional notes: