Unit: Covalent Bonding & Molecular Geometry

Orbital Hybridization

Unit: Covalent Bonding & Molecular Geometry

MA Curriculum Frameworks (2016): HS-PS1-2

Mastery Objective(s): (Students will be able to...)

• Determine the hybridization of the central atom in simple molecules.

Success Criteria:

- VSEPR shapes show the correct number of lone pairs in the correct locations and correct bond angles.
- Hybridization is correct (sp, sp² or sp³).

Tier 2 Vocabulary: hybrid

Language Objectives:

• Explain how electron clouds change shape.

Notes:

orbital: the name for one of the spaces around an atom where electrons are.

<u>hybrid orbital</u>: an orbital whose shape is a hybrid of the shapes of different types of orbitals (such as a cross between an s-orbital and a p-orbital).

It is tempting to think of electrons as well-behaved particles that stay within the rigid boundaries defined by their energy levels. However, electrons are actually tiny charged particles moving randomly at speeds close to the speed of light. Because of their energies and the energies of the nuclei and the other electrons around them, they bounce around within a specific area. If that area is the shared electrons in a covalent bond, the region has a different shape than the electrons of an unbonded atom.

When atoms form covalent bonds, the electrons occupy the space between the two atoms. The space where the bonding electrons are is still called an orbital, even though its shape is now *different* from the shapes of the orbitals in the s, p, d, or f sub-levels of a single atom.

Orbital Hybridization

Page: 296

Big Ideas	Details	, Unit: Covalent Bonding	g & Molecular Geometry			
	Recall that molecu trigonal pyramidal based on a tetrahe	iles with four electron clouds (tetrahedral, , or bent with single bonds, like H ₂ O), are edral VSEPR shape:				
	The shape of the o shape determined the following:	orbitals surrounding the central atom is the by the four electron clouds. It looks like				
	If we wanted to cru the <i>s</i> and <i>p</i> orbitals three <i>p</i> orbitals. W because it looks lik	eate four orbitals like this one by reshapin s of an atom's valent shell, we would need Ve therefore call this bonding orbital an sp ke a hybrid made from the one s and three	orbitals like this one by reshaping om's valent shell, we would need to start with one <i>s</i> and ore call this bonding orbital an <i>sp</i> ³ hybrid orbital, d made from the one <i>s</i> and three <i>p</i> orbitals.			
	Similarly, molecule based on the trigo	es with three electron clouds are nal planar VSEPR shape:				
	This hybrid orbital p orbitals, and wou	would come from one s and two uld be called an sp² hybrid orbital :	120°			
	Finally, the hybrid orbital .	orbital from one <i>s</i> and one <i>p</i> orbital is inde	eed called an <i>sp</i> hybrid			
	Lico this space for	summary and (or additional notae)				

Orbital Hybridization

Big Ideas Details Unit: Covalent Bondi					ar Ge
		Summary of VSEPR Shapes for Hybrid Orbitals			
		Hybridization	VSEPR Shape(s)	Bond Angles	
			tetrahedral	109.5°	
		sp ³	trigonal pyramidal,	107.5°	
			bent	104.5°	
		sp²	trigonal planar	120°	
			bent	118°	
		sp	linear	180°	

Orbital Hybridization

Big Ideas Details

Homework Problems

For each of the following molecules, draw the Lewis structure. Then build a model of the molecule, and use your model to determine the shape of the electron clouds, and the shape of the molecule.

Formula	Hybrid- ization	Lewis Structure	# of Electron Clouds around Central Atom	VSEPR shape
CHF₃	sp³	::: : н-с :: ::	4	tetrahedral
SCl ₂				
SiO2				
PH₃				
CH₂O				

			SituriySiturzut		Tuge.
Big Ideas	Details		Unit: Co	ovalent Bonding &	Molecular Geome
	Formula	Hybrid- ization	Lewis Structure	# of Electron Clouds around Central Atom	VSEPR shape
	C ₂ H ₂				
	HCN				

NO₃[−] BF_3

Use this space for summary and/or additional notes:

Page: 299

Orbital Hybridization

metry