Hydrates

Unit: Moles

MA Curriculum Frameworks (2016): HS-PS1-2, HS-PS1-3 Mastery Objective(s): (Students will be able to...)

• Determine the number of water molecules in a hydrate

Success Criteria:

- Empirical formula is calculated correctly (if necessary).
- Number of water molecules in each formula unit is calculated correctly.
- $\bullet\,$ Formula of hydrate is written correctly, with the empirical first, then a dot, then the number of H_2O molecules.
- Algebra and rounding to appropriate number of significant figures is correct.

Tier 2 Vocabulary: hydrate

Language Objectives:

- Explain the concept of a hygroscopic compound.
- Explain the process of determining the amount of water in a hydrate, both numerically and experimentally.

Notes:

hydrate: an ionic solid that has H₂O molecules loosely bound to its crystals.

water of hydration: the water molecules that are bound into a hydrate.

<u>anhydrous</u>: a compound that has had its water of hydration removed, usually by heating.

<u>hygroscopic</u>: a compound that can absorb water from the air. In a humid environment, an anhydrous compound will absorb water until it becomes the hydrate.

Big Ideas	Details Unit: Moles
	Naming of Hydrates
	The name of a hydrate is the name of the compound followed by a number prefix and the word "hydrate".
	The number prefix (the same ones we used for molecular compounds; found in "Table J. Number Prefixes" on page 512 of your Chemistry Reference Tables) indicates the number of H_2O molecules in the hydrate. For example, the compound nickel (II) chloride forms a hydrate that contains six water molecules. Its name is therefore:
	nickel (II) chloride hexahydrate
	Chemical Formula of a Hydrate
	The chemical formula of a hydrate is the chemical formula of the compound followed by a dot and the number of H_2O molecules bound to it. For example, the chemical formula of nickel (II) chloride hexahydrate is:
	$NiCl_2 \cdot 6 H_2O$
	Molar Mass of a Hydrate
	The molar mass of a hydrate includes the mass of the water of hydration. This means a hydrate will have a larger molar mass than the anhydrous compound. For example, the molar mass of NiCl ₂ is 129.60 g. The molar mass of H ₂ O is 18.015 g. The molar mass of 6 H ₂ O molecules is $6 \times 18.015 = 108.09$ g.
	Therefore, the molar mass of NiCl ₂ \cdot 6 H ₂ O is 129.60 + 108.09 = 237.69 g
	Experimentally Determining the Water of Hydration
	You can figure out the formula of a hydrate by weighing it, heating it to remove the water of hydration, and figuring out how many moles of water were removed for every mole of the compound.

Hydrates

Big Ideas	Details	Unit: Moles
	Sample Problem:	
	Q: Sodium sulfate forms a hydrate. We want to find the chemical form hydrate. Suppose you weighed out 32.22 g of the hydrate. After h remove all of the water, the final mass was 14.20 g.	nula of the eating it to
	 A: The formula of anhydrous sodium sulfate is Na₂SO₄, which has a monotonic sector of the sector	plar mass of
	$\frac{14.20 \text{ g Na}_2 \text{SO}_4}{1} \times \frac{1 \text{ mol Na}_2 \text{SO}_4}{142.05 \text{ g Na}_2 \text{SO}_4} = 0.10 \text{ mol Na}_2 \text{SO}_4$	1
	The amount of water removed was 32.22 – 14.20 = 18.02 g.	
	This 18.02 g of H_2O is:	
	$\frac{18.02\text{g}\text{H}_2\text{O}}{1} \times \frac{1\text{mol}\text{H}_2\text{O}}{18.0152\text{g}\text{H}_2\text{O}} = 1.000\text{mol}\text{H}_2\text{O}$	
	Our sample had 1 mole of H_2O and 0.1 mole of Na_2SO_4 . This is 10 t H_2O as Na_2SO_4 :	imes as much
	$\frac{1 \text{mol} \text{H}_2 \text{O}}{0.1 \text{mol} \text{Na}_2 \text{SO}_4} = \frac{10 \text{H}_2 \text{O}}{1 \text{Na}_2 \text{SO}_4}$	
	Therefore, the formula must be:	
	Na ₂ SO ₄ · 10 H ₂ O	

Big Ideas	Hydrates Details	Page: 337 Unit: Moles
	Homework Problems	
	1. What is the chemical formula of iron (III) chloride hexahydrate?	
	2. Give the stock name and molar mass of the compound CoSO $_4 \cdot 7$	′ H ₂ O?
	 If 10.0 g of Na₂CrO₄ · 4 H₂O is heated to constant mass (<i>i.e.,</i> until water of hydration is removed), what will the final mass be? 	all of the
	a. Find the molar mass of Na ₂ CrO ₄ \cdot 4 H ₂ O.	
	b. Find the number of moles of Na₂CrO₄ · 4 H2O in 10.0 g.	
	c. Find the molar mass of anhydrous Na ₂ CrO ₄ .	
	d. Convert the number of moles (<i>which you found in part b</i>) to using the molar mass of the anhydrous compound (<i>which yo part c</i>).	grams, ou found in

	Hy	vdrates		Page: 338
Details				Unit: Moles
3. 14.7 a ma dete	Og of a hydrate of C ass of 11.10g after e ermine the chemical	CaCl₂ is heated t evaporating the formula of the	o dryness. The an H ₂ O. Use the follo hydrate.	hydrous sample has owing steps to
a.	Find the moles of a	nhydrous comp	oound left at the e	nd.
b.	Find the moles of v water evaporated,	vater evaporate and then conve	ed. (You'll need to ert to moles.)	find the grams of

c. Find the ratio of the moles of water evaporated to the moles of the anhydrous compound. This will be the number of water molecules in the hydrate.

d. Write the formula for the hydrate (*using the number of water malecules that you found in part c*)?

Use this space for summary and/or additional notes:

Big Ideas