Unit: Solutions

MA Curriculum Frameworks (2016): HS-PS2-7(MA)

Mastery Objective(s): (Students will be able to ...)

- Calculate the concentration of a solution in $\frac{mol}{L}$.
- Calculate the final concentration of a solution after dilution.

Success Criteria:

- Solutions have the correct quantities substituted for the correct variables.
- Algebra and rounding to appropriate number of significant figures is correct.

Tier 2 Vocabulary: concentration, molar

Language Objectives:

• Explain how concentration is calculated.

Notes:

<u>concentration</u>: how much of something (solute) is dissolved in something else (solvent).

molarity (NA): a unit of concentration equal to	moles of solute	_ mol
molarity (M): a unit of concentration equal to	L of solution	or <u> </u>

<u>dilution</u>: the process of decreasing the concentration of a substance by adding more solvent.

dilute: a solution that has a low concentration of solute dissolved in it.

There are three common types of problems involving molarity:

- 1. Find the molarity of a solution containing ____ grams/moles of solute with a volume of ____ L.
- "How many moles/grams of a chemical would you need to make ____ L of a ____ M solution?" OR "What volume would you add to ____ moles/grams of a chemical to make a ____ M solution?"
- What volume of ____ M solution would you add to water to make ____ L of a ____ M solution.

		Concentration (worldnity)	Page: 355
Big Ideas	De	tails	Unit: Solutions
	1.	Determining Concentration	
		To calculate the molarity of a solution:	
		1. find the moles of solute	
		2. find the liters of solution	
		3. divide the moles by the liters	
		For example: Determine the molarity of a solution made by disof CuSO ₄ in enough water to make a total volume of 500 mL (0.	-
		$\frac{0.25 \text{ mol } \text{CuSO}_4}{0.5 \text{ L solution}} = 0.5 \frac{\text{mol } \text{CuSO}_4}{\text{L}} = 0.5 \text{ M } \text{CuSO}_4$	
		(pronounced "0.5 molar copper sulfate").	
	2.	Determining the mass of solute or the volume of water neede	d
		To solve these problems, use the molarity as a conversion factor $\frac{\text{mol}}{\text{L}}$ (for example, 1.75 M would be $\frac{1.75 \text{ mol}}{1 \text{L}}$, or 1.75 mol = 1	-
		For example:	
		How many moles of AgNO₃ would you need to dissolve in wate 100. mL (0.100 L) of an 0.50 M solution?	r to make
		$\frac{0.100 \text{ L}}{1} \times \frac{0.50 \text{ mol}}{1 \text{ L}} = 0.050 \text{ mol}$	
		Note that if the question had asked for <u>grams</u> of AgNO ₃ , you we convert moles of AgNO ₃ to grams.	ould then need to

			Page: 356
Big Ideas	De	tails	Unit: Solutions
	3.	Dilution problems	
		The idea is that the moles of solute before dilution must equal t solute after dilution. Because molarity times volume equals mo	
		$\left(\frac{\text{mol}}{L} \times L = \text{mol}\right)$, this means $M_1V_1 = M_2V_2$, where M_1 and M_2 are	e the molarities
		before and after dilution, respectively, and V_1 and V_2 are the vol and after dilution.	
		For example:	
		How much 0.50 M HCl would you need to add to water to make 0.10 M solution?	2.0 L of an
		$M_1V_1 = M_2V_2$	
		<i>M</i> ₁ = 0.50 M	
		$V_1 = V_1$	
		$M_2 = 0.10 \text{ M}$	
		$V_2 = 2.0 L$	
		$(0.50)V_1 = (0.10)(2.0)$	
		$V_1 = \frac{(0.10)(2.0)}{0.50} = 0.40 \mathrm{L}$	

Use this space for summary and/or additional notes:

_

Concentration (Molarity)	Page: 357	
Details	Unit: Solutions	
Homework Problems		
1. What is the molarity of a solution that contains 25.2 g of KNO_3 (F.W. =		
101.1 ^g _{mol}) dissolved in enough water to make a total volum solution?	e of 200. mL of	
Answer: 1.25 M		
Answer: 0.300 M		
	Details Homework Problems 1. What is the molarity of a solution that contains 25.2 g of KN 101.1 g/mol) dissolved in enough water to make a total volum solution? Answer: 1.25 M 2. What is the molarity of a solution that contains 22.5 g of Na 149.98 g/mol) dissolved in enough water to make a total volum solution?	

Pig Idoac	Details	Unit: Solution
Big Ideas		
	 How many grams of NaOH (F.W. = 40.00 ^g/_{mol}) would you make 1.0 L of a 2.0 M solution? 	dissolve in water to
	Answer: 80. g NaOH	
	4. How many grams of KCl (F.W. = $74.55 \frac{g}{mol}$) would you dis	solve in water to
	make 250. mL of 0.100 M solution?	
	Answer: 1.86 g KCl	
	5. How many mL of 12.0 M HCl would you add to water to r	nake 500 ml of a
	1.00 M solution?	hake 500. IIIL of a
	Answer: 42.0 mL HCl	

Big Ideas	Details	Unit: Solutions
	 If you put two teaspoons (8.0 g) of sucrose (C₁₂H₂₂O₁₁) into 30 what is the concentration of sugar in the resulting solution? 	
	Answer: 0.078 M	