Unit: Oxidation & Reduction

MA Curriculum Frameworks (2016): HS-PS1-10(MA)

Mastery Objective(s): (Students will be able to...)

- Assign oxidation numbers.
- Write and balance equations for simple REDOX reactions.

Success Criteria:

Details

- Oxidation numbers agree with published/accepted values.
- Oxidation numbers add up to zero for compounds and to the charge for ions.
- Balanced REDOX reactions have the same number of each type of atom and the same number of electrons transferred on each side.

Tier 2 Vocabulary: reduce

Language Objectives:

• Explain electron transfer. Explain the charge that an ion gets when electrons are added or removed.

Notes:

oxidation-reduction reaction (REDOX reaction): a reaction in which one or more electrons are transferred from one atom to another.

In the 1700s, oxidation meant that an atom was combined with oxygen, and was therefore "oxidized". For example:

$$2 \text{Cu} + \text{O}_2 \rightarrow 2 \text{CuO}$$

In this reaction, oxygen is more electronegative than copper, so oxygen took electrons away from copper. This means that the copper (which was "oxidized" by oxygen) lost two electrons and ended up with a +2 charge. Oxygen gained two electrons and ended up with a -2 charge. As a result, the term "oxidation" has come to mean "losing electrons".

Also, in the 1700s, scientists found that if they heated the CuO (in which copper has a +2 charge), they ended up with copper metal (with a charge of zero), and the weight was reduced. Thus copper was said to be "reduced". As a result, the term "reduction" has come to mean "gaining electrons".

Big Ideas	Details	Unit: Oxidation & Reduction
	oxidation: the loss of one or more electrons by an atom	in a chemical reaction
	<u>reduction:</u> the gain of one or more electrons by an aton	n in a chemical reaction.
	Stupid Mnemonics: There are two popular mnemonics and reduction, one "Democratic" and one "Rep	for remembering oxidation ublican".
	LEO the lion says 'GER' ("Democratic" mnemonic invo LEO stands for "Loss of Electrons is Oxidation" and (Electrons is Reduction"	lving endangered species): GER stands for "Gain of
	OIL RIG ("Republican" mnemonic involving oil compani- Involves Loss (of electrons)", and RIG stands for "Re electrons)."	es): OIL stands for "Oxidation eduction Involves Gain (of
	In a redox reaction, at least one element is oxidized, and is reduced. An element cannot be oxidized in a chemica element is reduced, and vice-versa. (After all, the electr somewhere, and they have to go somewhere.)	d at least one other element Il reaction unless some other rons have to come from
	All chemical reactions in which an element becomes pa versa, are redox reactions. This includes all single repla combustion reactions, and many synthesis and decomp chemists generally classify a reaction as a redox reaction the energy of the reaction comes from electron transfer	rt of a compound, or vice- cement reactions, osition reactions. However, n only when most or all of r.

Big Ideas	Details	Unit: Oxidation & Reduction
	Oxidation Number	S
	An oxidation number is a measure of how "oxidized" ar neither oxidized nor reduced, so it has an oxidation nur	atom is. An element is nber of zero.
	 An element that has lost electrons (oxidized) gets number, equal to the number of electrons it has l 	a positive oxidation ost.
	 An element that has gained electrons (reduced) g number, equal to the number of electrons it has g 	ets a negative oxidation gained.
	Therefore:	
	when an element is oxidized, the oxidation numb	er increases.
	 When an element is reduced, the oxidation numb (decreases). 	er is also reduced
	oxidation number (or "oxidation state"): the charge tha compound if all bonds were completely ionic and ev or ion had a charge.	t an atom would have in a very atom in the compound
	L Use this space for summary and/or additional notes:	

Big Ideas	Details	Unit: Oxidation & Reduction
		Assigning Oxidation Numbers
	 The c The c The c polya In a c Th ne to Al Al Al Al Al Al Ca 	exidation number of a pure element is 0. (Even if it's diatomic.) exidation numbers in a compound add up to 0 exidation number of an ion is its charge. (Oxidation numbers in a atomic ion add up to the charge of the polyatomic ion.) empound or polyatomic ion: the most electronegative element (the last one in the formula) has a egative exidation number equal to the number of electrons it would need fill its valent shell. I other atoms have positive exidation numbers. uorine is always -1. eygen is always -2 except in the peroxide ion $(O_2^{2^-})$ and in OF_2 . eydrogen is always +1 except in metal hydrides (such as NaH). kali (group 1) metals are always +1. kaline Earth (group 2) metals are always +2. is always +3, Zn is always +2, and Ag is always +1. elculate other elements from the above.
	Sample P	roblem:
	What are t	he oxidation numbers of each element in the compound Na ₂ HPO ₄ :
	● Na₂H	PO ₄ is an ionic compound made of the ions Na ⁺ and HPO ₄ ^{2–} .
	• The M	Ja⁺ ion has a charge of +1, so the oxidation number of Na is +1.
	• The F and C o O	 IPO₄²⁻ ion has a charge of −2. This means the oxidation numbers of H, P, D must add up to −2. = −2. There are 4 O atoms. (4)(−2) = −8
	0 H	is +1.
	o If o>	the oxidation numbers for the O atoms add up to −8 and H is +1, then the idation number for P must be +5 so the total can add up to −2.

Big Ideas	Details		Unit: Oxidation & Reduction
		Balancing REDOX R	eactions
	To fully balance	e a redox reaction, you must baland	ce:
	AtomsElectroTotal cl	(as you would in a regular equatior ns lost/gained harge	n)
	Often, redox re balancing them electrons are p reduction half-	eactions are shown and balanced as i is often a simple matter of making roduced by the oxidation half-react reaction.	s net ionic equations. In this case, g sure that the same number of tion and consumed by the
	For example, co	onsider the unbalanced net ionic eq	quation:
		$AI^{0}(s)$ + $Zn^{2+}(aq) \rightarrow AI^{3+}(aq)$	q) + Zn ⁰ (s)
	In this reaction, The <u>atoms</u> appo produces 3 elec	, Al is oxidized from Al ⁰ to Al ⁺³ , and ear balanced, but Zn ²⁺ needs only 2 ctrons when oxidized to Al ³⁺ .	Zn is reduced from Zn ⁺² to Zn ⁰ . electrons to form Zn ⁰ , but Al ⁰
	The two half-re	eactions are: Oxidation: $AI^0 \rightarrow AI^{3+}$ Reduction: $Zn^{2+} + 2e^{-1}$	$r + 3 e^{-}$ $\rightarrow Zn^{0}$
	To balance the second one by	electrons, we need to multiply the 3, giving:	first half-reaction by 2, and the
		$2 \operatorname{Al}^0 \rightarrow 2 \operatorname{Al}^{3+} + 6$ $3 \operatorname{Zn}^{2+} + 6 \operatorname{e}^- \rightarrow 3 \operatorname{Z}^{3+}$	e⁻ ′n⁰
	If we combine t on both sides),	these and cancel the electrons (bec we get the balanced net ionic equa	ause we have the same number ation:
		$2 \text{Al}^{0}(s) + 3 \text{Zn}^{2+}(aq) \rightarrow 2 \text{Al}^{3+}$	(aq) + 3 Zn ⁰ (s)
	REDOX reactior reactions are al participates in t scope of this co	ns can get a lot more complicated, lso taking place and the water that the reaction. Balancing complex RI burse, but is covered in AP [®] Chemis	especially when acid-base the ions are dissolved in EDOX reactions is beyond the try.

	Oxidation-Reduction (REDOX) Reactions Page: 405
Big Ideas	Details Unit: Oxidation & Reduction
	Homework Problems
	For each of the following compounds or ions, write the oxidation number of each element.
	1. FeO
	2. N ₂
	3. KMnO₄
	4. NH₄OH
	5. (NH ₄) ₃ PO ₄
	6. $Cr_2O_7^{2-}$

Big Ideas Details Unit: Oxidation & Reduction Balance the following (redox) equations. A superscript "0" indicates a pure element. 7. Zn ⁰ + Tl ⁺ \rightarrow Tl ⁰ + Zn ²⁺ 8. Ll ⁰ + Cr ³⁺ \rightarrow Cr ⁰ + Ll ⁺ 9. K ⁰ + Mg ²⁺ \rightarrow K ⁺ + Mg ⁰		Oxidation-Reduction (REDOX) Reactions Page: 406
Balance the following (redox) equations. A superscript "0" indicates a pure element. 7. $Zn^0 + Tl^* \rightarrow Tl^0 + Zn^{2*}$ 8. $Ll^0 + Cr^{3*} \rightarrow Cr^0 + Ll^*$ 9. $K^0 + Mg^{2*} \rightarrow K^* + Mg^0$	Big Ideas	Details Unit: Oxidation & Reduction
7. $Zn^0 + Tl^* \rightarrow Tl^0 + Zn^{2*}$ 8. $Ll^0 + Cr^{3*} \rightarrow Cr^0 + Ll^*$ 9. $K^0 + Mg^{2*} \rightarrow K^* + Mg^0$		Balance the following (redox) equations. A superscript "0" indicates a pure element.
8. $Li^0 + Cr^{3+} \rightarrow Cr^0 + Li^*$ 9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		7 $7n^0 + Tl^+ \rightarrow Tl^0 + 7n^{2+}$
8. $L^{10} + Cr^{3+} \rightarrow Cr^{0} + Li^{+}$ 9. $K^{0} + Mg^{2+} \rightarrow K^{+} + Mg^{0}$		
8. $Li^{0} + Cr^{3+} \rightarrow Cr^{0} + Li^{+}$ 9. $K^{0} + Mg^{2+} \rightarrow K^{+} + Mg^{0}$		
8. $Li^{0} + Cr^{3*} \rightarrow Cr^{0} + Li^{*}$ 9. $K^{0} + Mg^{2*} \rightarrow K^{*} + Mg^{0}$		
8. $Li^0 + Cr^{3*} \rightarrow Cr^0 + Li^*$ 9. $K^0 + Mg^{2*} \rightarrow K^* + Mg^0$		
8. $Li^0 + Cr^{3*} \rightarrow Cr^0 + Li^*$ 9. $K^0 + Mg^{2*} \rightarrow K^* + Mg^0$		
8. $Li^{0} + Cr^{3*} \rightarrow Cr^{0} + Li^{*}$ 9. $K^{0} + Mg^{2*} \rightarrow K^{*} + Mg^{0}$		
8. $LI^{0} + Cr^{3+} \rightarrow Cr^{0} + LI^{+}$ 9. $K^{0} + Mg^{2+} \rightarrow K^{*} + Mg^{0}$		
8. $Li^0 + Cr^{3*} \rightarrow Cr^0 + Li^*$ 9. $K^0 + Mg^{2*} \rightarrow K^* + Mg^0$		
8. $Li^{0} + Cr^{3+} \rightarrow Cr^{0} + Li^{*}$ 9. $K^{0} + Mg^{2+} \rightarrow K^{*} + Mg^{0}$		
8. $Li^0 + Cr^{3*} \rightarrow Cr^0 + Li^*$ 9. $K^0 + Mg^{2*} \rightarrow K^* + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		8. $Li^0 + Cr^{3+} \rightarrow Cr^0 + Li^+$
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$		
9. $K^0 + Mg^{2^+} \rightarrow K^+ + Mg^0$		
		9. $K^0 + Mg^{2+} \rightarrow K^+ + Mg^0$