Unit: Stoichiometry

Details

MA Curriculum Frameworks (2016): HS-PS1-7

Mastery Objective(s): (Students will be able to...)

• Solve stoichiometry problems that require mole conversions.

Success Criteria:

- Conversions between moles and other quantities are set up and executed correctly.
- For each compound in the chemical equation, the ratio of the coëfficients is the same as the ratio of the moles.
- Algebra and rounding to appropriate number of significant figures is correct.

Tier 2 Vocabulary: mole, coëfficient

Language Objectives:

• Explain the order of operations: convert to moles, do stoichiometry, convert from moles to desired units.

Notes:

stoichiometry: measurement of how much of each reactant is used and how much of each product is produced in a chemical reaction.

Remember that stoichiometry has to be done in moles.

- If you are given amounts in any other unit, you need to convert to moles before doing stoichiometry.
- If your answer needs to be in another unit, you need to convert after doing stoichiometry.

<u>mass-mass problem</u>: a stoichiometry problem that requires mole conversions from mass of a reactant to moles, and then moles of a product back to mass.

Note that there are many other similar problems that would work the same way *e.g.,* from volume of a gas (using the ideal gas law) to moles, from volume of a liquid that has a certain concentration (in $\frac{\text{mol}}{1}$) to moles, *etc.*

Big Ideas	Details	Unit: Stoichiometry
	Sample Problem:	
	How many grams of copper metal would be produced from 13.5 excess copper chloride solution in the chemical reaction:	g of aluminum and
	2 Al (s) + 3 CuCl ₂ (aq) \rightarrow 2 AlCl ₃ (aq) + 3 Cu (s)	
	Strategy:	
	1. Convert grams of AI to moles.	
	2. Use stoichiometry to convert moles of Al to moles of Cu	
	3. Convert moles of Cu to grams.	
	Setup:	
	$\frac{13.5 \text{gAt}}{\times} \frac{1 \text{molAt}}{\times} \frac{3 \text{molCu}}{\times} \frac{63.5 \text{gCu}}{\times}$	
	1 27.0 gAt 2 motAt 1 motCu	
	Answer:	
	$\frac{(13.5)(3)(63.5)}{(27.0)(2)} = \frac{2572}{54.0} = 47.6 \text{ g Cu}$	
	theoretical yield: the amount of a product you could make base calculations, assuming that at least one of the reactants is co	d on stoichiometry ompletely used up.
	excess: having more of a reactant than is needed. This means s "enough that you don't have to worry about using it all up." problems in which this is not the case in the next section ("L starting on page 419.)	imply that there is We will see imiting Reactant,"
	By this point in this course, you have undoubtedly figured out th challenging problems you will encounter are created by stringing sequence of easy problems until it becomes hard to keep track of doing. Stoichiometry is easy (once you get the hang of it). Mole easy (assuming you've got the hang of them). Combining the tw it's just a sequence of easy problems.	hat most of the g together a of what you're e conversions are yo looks hard, but

Stoichiometry: Mass-Mass Problems

Big Ideas	Details	Unit: Stoichiometry
		Homework Problems
	1.	In the chemical reaction:
		$2 \text{ K} + \text{Cl}_2 \rightarrow 2 \text{ KCl}$
		 a. How many <i>moles</i> of KCI (F.W. 74.55^g/_{mol}) would be produced from 2.50 g of K and excess Cl₂?
		Answer: 0.0639 mol KCl
		b. How many grams of KCI would be produced?
		Answer: A 76 g KCl
	2.	In the chemical reaction:
		$Na_2O + H_2O \rightarrow 2 NaOH$
		a. If 124 g of Na ₂ O (F.W. $61.98 \frac{g}{mol}$) is reacted with excess H ₂ O, how
		many grams of NaOH (F.W. $40.00 \frac{g}{mol}$) will be made?
		Answer: 160. g NaOH
		b If instead you wanted to make 100 g of NaOH how many grams of
		Na ₂ O would you need?
		Answer: 77.5 g NaOH

Stoichiometry: Mass-Mass Problems

Big Ideas	Details	Unit: Stoichiometry
	3.	In the decomposition reaction:
		$2 \text{ NaClO}_3 \rightarrow 2 \text{ NaCl} + 3 \text{ O}_2$
		If you reacted 26.6 g of NaClO ₃ (F.W. 106.44 $\frac{g}{mol}$), what volume of O ₂ would
		you make at a pressure of 1.03 atm and a temperature of 30 °C? (<i>Hint: Use PV = nRT.</i>)
		Answer: 9.06 L O ₂ (g)
	4.	Given the precipitation reaction:
		$3 \text{ CaCl}_2 (aq) + 2 \text{ Na}_3 \text{PO}_4 (s) \rightarrow \text{Ca}_3 (\text{PO}_4)_2 (\text{ppt}) + 6 \text{ NaCl} (aq)$
		If you added an excess of powdered Na ₃ PO ₄ to 100. mL of an $0.200 \frac{\text{mol}}{1}$
		solution of CaCl ₂ , how many grams of precipitate would form? (Assume that all of the Ca ₃ (PO ₄) ₂ precipitates, and that all of the Na ₃ PO ₄ dissolves.)
		Answer: $2.07 \text{ g Ca}_{3}(PO_{4})_{2}$ (ppt)
	5.	How many grams of precipitate would form if 94.6 g of $FeCl_3 \cdot 6 H_2O$ crystals were added to an aqueous solution containing an excess of Na_2SiO_3 ? (<i>Hint: you will need to predict the products and balance the equation in order to do the stoichiometry.</i>)
		Answer: 50 5 g Ee ₂ (SiO ₂), (ppt)
		7.115wc1. 50.5 B1 C2(5103/3 (bbt)