Details		Unit: Stoichiometry
	Limiting F	leactant
Unit: Stoichiometry		
MA Curriculum Fra	meworks (2016): HS	-PS1-7
Mastery Objective	(s): (Students will be	able to)
 Identify the lim 	niting reactant in a stoid	hiometry problem.
 Perform stoich reactant. 	iometry calculations in	a problem that involves a limiting
 Determine the 	amount(s) of the non-l	imiting reactant(s) left over.
Success Criteria:		
 Limiting reacta 	nt correctly identified	
 Stoichiometry compound in t 	calculations performed he desired units).	correctly (correct amount of desired
 Algebra and ro Tier 2 Vocabulary: 	unding to appropriate ı limiting	number of significant figures is correct.
Language Objectiv	es:	
• Explain why a d	chemical reaction runs	out of something.
Notes:		
O: What hannens wh	en a chemical reaction	runs out of something?
g. What happens wh		runs out of something:
A: The reaction stops		
A reaction in which y	ou run out of somethin	g is called a <u>l</u> imiting reactant problem.
The reactant that you because running out	u run out of is called the of it is what limits how	e <u>limiting reactant</u> (or limiting reagent) much product you can make.
because running out	of it is what limits how	much product you can make.

Use this space for summary and/or additional notes:

Big Ideas

Consider the following reaction:

Details

Big Ideas

Suppose you have 51 cans and four six-pack rings. There are two possibilities:

- 1. We use up all of the cans. (Situation A)
- 2. We use up all of the six-pack rings. (Situation B)

	Six-Packs	Six-Pack Rings	Cans	Situation
X	could make 8.5	need at least 8.5	Have 51	А
\odot	could make 4	Have 4	need at least 24	В

As you can see, we have only enough of <u>both</u> reactants to make 4 six-packs. Once we have made 4 six-packs, we have used up all of the six-pack rings, and we cannot make any more.

This means six-pack rings are the limiting reactant, and we use all of them.

We used up 24 cans (the non-limiting reactant), and we had 27 cans left over.

On the other hand, suppose we have only 15 cans and 4 six-pack rings. Again, there are two possibilities:

- 1. We use up all of the cans. (Situation C)
- 2. We use up all of the six-pack rings. (Situation D)

	Six-Packs	Six-Pack Rings	Cans	Situation
0	could make 2.5	need at least 2.5	have 15	С
X	could make 6	have 4	need at least 24	D

This time, we can make 2.5 six-packs and then we run out of cans, so now the limiting reactant is cans. If we make 2.5 six-packs, we would use 2.5 six-pack rings, which means we would have 1.5 six-pack rings left over.

		Linning Reactant	Page: 421
Big Ideas	Details		Unit: Stoichiometry
	The secret to solvin each reactant (usir products you make make the least am	ng limiting reactant problems is to do a stong the factor-label method) to see how me e if you used it all up. The limiting reactan ount of product (gets used up first).	oichiometry problem on uch of one of the it is the one that can
	Steps	for Solving Limiting Reactant	t Problems
	 Does the p it's not a li 	problem give you amounts for more than o miting reactant problem.)	one reactant? (If not,
	2. Convert th	e amount of each reactant to moles.	
	For each o of the proc	f the reactants, use stoichiometry to figur ducts you could make if you used the reac	e out how much of one tant up.
	4. The reacta used up fir	ant that can make the <u>least</u> amount of pro rst—it is the limiting reactant .	duct is the one that gets
	5. Perform all the limiting	Il of your stoichiometry calculations using g reactant that you identified in step 4 about the step 4 abo	the number of moles of ove.
	 If the prob over, use t the other i started wit 	elem asks how much of one of the non-lim the moles of the limiting reactant to find o reactant got used up. Subtract this numbe th to find out how much is left over.	iting reactants is left out how many moles of er from the moles you
	7. If the prob convert fro	elem is asking for a quantity other than mo no moles to the desired unit.	ples (such as grams),

Sample Problem: Q: Given the following reaction: $16 \text{ Cu} + S_8 \rightarrow 8 \text{ Cu}_2 \text{S}$ If we had 27.5 moles of copper and 1.4 moles of S_8 , how much Cu}2 swould we make? A: Determine how many moles of Cu}5 we could make from each reactant: $\frac{27.5 \text{ mol}\text{Cu}}{1} \times \frac{8 \text{ mol}\text{Cu}_2 \text{S}}{16 \text{ mol}\text{Cu}} = 13.75 \text{ mol}\text{Cu}_2 \text{S} \bigcirc \text{more}$ $\frac{1.4 \text{ mol} S_8}{1} \times \frac{8 \text{ mol}\text{Cu}_2 \text{S}}{1 \text{ mol} S_8} = 11.2 \text{ mol}\text{Cu}_2 \text{S} \bigcirc \text{less}$ We can make $\frac{11.2 \text{ mol} \text{ of } \text{Cu}_2 \text{S}}{1 \text{ mol} \text{ S}_8} = 11.2 \text{ mol} \text{ cu}_2 \text{S} \frown \text{ less}$ We can make $\frac{11.2 \text{ mol} \text{ of } \text{Cu}_2 \text{S}}{1 \text{ mol} \text{S}_8} = 12.2 \text{ mol} \text{ cu}_2 \text{S}$. This means S_8 is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S_8 was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol} S_8}{1} \times \frac{16 \text{ mol} \text{Cu}}{1 \text{ mol} S_8} = 22.4 \text{ mol} \text{Cu}_2 \text{S}$ Now we subtract to find how much was left: $27.5 \text{ mol} - 22.4 \text{ mol} = \overline{5.1 \text{ mol} \text{ Cu} \text{ left over}}$	Big Ideas	Details	Unit: Stoichiometry
Q: Given the following reaction: 16 Cu + S ₈ \rightarrow 8 Cu ₂ S If we had 27.5 moles of copper and 1.4 moles of S ₈ , how much Cu ₂ S would we make? A: Determine how many moles of Cu ₂ S we could make from each reactant: $\frac{27.5 \text{ mol} \text{Cu}}{1} \times \frac{8 \text{ mol} \text{Cu}_2 \text{S}}{16 \text{ mol} \text{Cu}} = 13.75 \text{ mol} \text{Cu}_2 \text{S} \bigcirc \text{ more}$ $\frac{1.4 \text{ mol} \text{S}_8}{1} \times \frac{8 \text{ mol} \text{Cu}_2 \text{S}}{1 \text{ mol} \text{S}_8} = 11.2 \text{ mol} \text{Cu}_2 \text{S} \bigcirc \text{ less}$ We can make $\boxed{11.2 \text{ mol} \text{ of } \text{Cu}_2 \text{S}}$ and then we run out of S ₈ . This means S ₈ is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S ₈ was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol} \text{S}_8}{1} \times \frac{16 \text{ mol} \text{Cu}}{1 \text{ mol} \text{S}_8} = 22.4 \text{ mol} \text{Cu}_2 \text{S}$ Now we subtract to find how much was left: $27.5 \text{ mol} - 22.4 \text{ mol} = \boxed{5.1 \text{ mol} \text{ Cu} \text{ left over}}$		Sample Problem:	
$16 \text{ Cu} + S_8 \rightarrow 8 \text{ Cu}_2\text{S}$ If we had 27.5 moles of copper and 1.4 moles of S ₈ , how much Cu ₂ S would we make? A: Determine how many moles of Cu ₂ S we could make from each reactant: $\frac{27.5 \text{ mol}\text{Cu}_2\text{S}}{1} \times \frac{8 \text{ mol}\text{Cu}_2\text{S}}{16 \text{ mol}\text{Cu}} = 13.75 \text{ mol}\text{Cu}_2\text{S} \textcircled{\text{more}}$ $\frac{1.4 \text{ mol}\text{S}_8}{1} \times \frac{8 \text{ mol}\text{Cu}_2\text{S}}{1 \text{ mol}\text{S}_8} = 11.2 \text{ mol}\text{Cu}_2\text{S} \fbox{\text{cless}}$ We can make $\boxed{11.2 \text{ mol} \text{ of }\text{Cu}_2\text{S}}$ and then we run out of S ₈ . This means S ₈ is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S ₈ was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol}\text{S}_8}{1} \times \frac{16 \text{ mol}\text{Cu}}{1 \text{ mol}\text{S}_8} = 22.4 \text{ mol}\text{Cu}_2\text{S}$ Now we subtract to find how much was left: 27.5 mol - 22.4 mol = $\boxed{5.1 \text{ mol}\text{ Cu} \text{ left over}}$		Q: Given the following reaction:	
If we had 27.5 moles of copper and 1.4 moles of S ₈ , how much Cu ₂ S would we make? A: Determine how many moles of Cu ₂ S we could make from each reactant: $\frac{27.5 \text{ mol}Cu}{1} \times \frac{8 \text{ mol}Cu_2S}{16 \text{ mol}Cu} = 13.75 \text{ mol}Cu_2S \textcircled{more}$ $\frac{1.4 \text{ mol}S_8}{1} \times \frac{8 \text{ mol}Cu_2S}{1 \text{ mol}S_8} = 11.2 \text{ mol}Cu_2S \Huge{more}$ We can make $\boxed{11.2 \text{ mol} of Cu_2S}$ and then we run out of S ₈ . This means S ₈ is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S ₈ was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol}S_8}{1} \times \frac{16 \text{ mol}Cu}{1 \text{ mol}S_8} = 22.4 \text{ mol}Cu_2S$ Now we subtract to find how much was left: 27.5 mol - 22.4 mol = $\boxed{5.1 \text{ mol} \text{ Cu} \text{ left over}}$		16 Cu + S ₈ \rightarrow 8 Cu ₂ S	
A: Determine how many moles of Cu ₂ S we could make from each reactant: $\frac{27.5 \text{mol}Cu}{1} \times \frac{8 \text{mol}Cu_2S}{16 \text{mol}Cu} = 13.75 \text{mol}Cu_2S \textcircled{more}$ $\frac{1.4 \text{mol}S_8}{1} \times \frac{8 \text{mol}Cu_2S}{1 \text{mol}S_8} = 11.2 \text{mol}Cu_2S \fbox{less}$ We can make $\boxed{11.2 \text{ mol} of Cu_2S}$ and then we run out of S ₈ . This means S ₈ is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S ₈ was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{mol}S_8}{1} \times \frac{16 \text{mol}Cu}{1 \text{mol}S_8} = 22.4 \text{mol}Cu_2S$ Now we subtract to find how much was left: $27.5 \text{ mol} - 22.4 \text{ mol} = \boxed{5.1 \text{ mol} \text{ Cu} \text{ left over}}$		If we had 27.5 moles of copper and 1.4 moles of S_8 , how mmake?	nuch Cu₂S would we
$\frac{27.5 \text{ mol} \text{Cu}}{1} \times \frac{8 \text{ mol} \text{Cu}_2 \text{S}}{16 \text{ mol} \text{Cu}} = 13.75 \text{ mol} \text{Cu}_2 \text{S} \textbf{more}$ $\frac{1.4 \text{ mol} \text{S}_8}{1} \times \frac{8 \text{ mol} \text{Cu}_2 \text{S}}{1 \text{ mol} \text{S}_8} = 11.2 \text{ mol} \text{Cu}_2 \text{S} \textbf{fess}$ We can make $\boxed{11.2 \text{ mol} \text{ of } \text{Cu}_2 \text{S}}$ and then we run out of S_8 . This means S_8 is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S_8 was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol} \text{S}_8}{1} \times \frac{16 \text{ mol} \text{Cu}}{1 \text{ mol} \text{S}_8} = 22.4 \text{ mol} \text{Cu}_2 \text{S}$ Now we subtract to find how much was left: $27.5 \text{ mol} - 22.4 \text{ mol} = \boxed{5.1 \text{ mol} \text{ Cu} \text{ left over}}$		A: Determine how many moles of Cu_2S we could make from e	each reactant:
$\frac{1.4 \text{ mol } S_g}{1} \times \frac{8 \text{ mol } Cu_2 S}{1 \text{ mol } S_g} = 11.2 \text{ mol } Cu_2 S \textbf{Less}$ We can make $\boxed{11.2 \text{ mol } of Cu_2 S}$ and then we run out of S_g . This means S_g is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S_g was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol } S_g}{1} \times \frac{16 \text{ mol } Cu}{1 \text{ mol } S_g} = 22.4 \text{ mol } Cu_2 S$ Now we subtract to find how much was left: $27.5 \text{ mol} - 22.4 \text{ mol} = \boxed{5.1 \text{ mol } Cu \text{ left over}}$		$\frac{27.5 \text{ mol Cu}}{1} \times \frac{8 \text{ mol Cu}_2 \text{S}}{16 \text{ mol Cu}} = 13.75 \text{ mol Cu}_2 \text{S}$	- more
We can make $11.2 \text{ mol of } Cu_2S$ and then we run out of S_8 . This means S_8 is the limiting reactant. Q: How much of the non-limiting reactant would be left over? A: S_8 was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol } S_8}{1} \times \frac{16 \text{ mol } Cu}{1 \text{ mol } S_8} = 22.4 \text{ mol } Cu_2S$ Now we subtract to find how much was left: 27.5 mol - 22.4 mol = 5.1 mol Cu left over		$\frac{1.4 \text{ mol } S_8}{1} \times \frac{8 \text{ mol } Cu_2 S}{1 \text{ mol } S_8} = 11.2 \text{ mol } Cu_2 S$	- less
Q: How much of the non-limiting reactant would be left over? A: S_8 was limiting, and we had 1.4 moles of it. We need to find out how much Cugot used up. $\frac{1.4 \text{ mol } S_8}{1} \times \frac{16 \text{ mol } \text{Cu}}{1 \text{ mol } S_8} = 22.4 \text{ mol } \text{Cu}_2\text{S}$ Now we subtract to find how much was left: 27.5 mol - 22.4 mol = 5.1 mol Cu left over		We can make $\boxed{11.2 \text{ mol of } Cu_2 S}$ and then we run out of S_8 limiting reactant.	. This means S_8 is the
A: S_8 was limiting, and we had 1.4 moles of it. We need to find out how much Cu got used up. $\frac{1.4 \text{ mol } S_8}{1} \times \frac{16 \text{ mol } \text{Cu}}{1 \text{ mol } S_8} = 22.4 \text{ mol } \text{Cu}_2\text{S}$ Now we subtract to find how much was left: $27.5 \text{ mol} - 22.4 \text{ mol} = \frac{5.1 \text{ mol } \text{Cu} \text{ left over}}{1 \text{ mol } \text{S}_8}$		Q: How much of the non-limiting reactant would be left over?	2
$\frac{1.4 \text{ mol } S_8}{1} \times \frac{16 \text{ mol } Cu}{1 \text{ mol } S_8} = 22.4 \text{ mol } Cu_2 S$ Now we subtract to find how much was left: $27.5 \text{ mol} - 22.4 \text{ mol} = \frac{5.1 \text{ mol } Cu \text{ left over}}{1 \text{ mol } S_8}$		A: S ₈ was limiting, and we had 1.4 moles of it. We need to fin got used up.	d out how much Cu
Now we subtract to find how much was left: 27.5 mol – 22.4 mol = 5.1 mol Cu left over		$\frac{1.4 \text{ mol } S_8}{1} \times \frac{16 \text{ mol } Cu}{1 \text{ mol } S_8} = 22.4 \text{ mol } Cu_2$	₂ S
27.5 mol – 22.4 mol = 5.1 mol Cu left over		Now we subtract to find how much was left:	
		27.5 mol – 22.4 mol = 5.1 mol Cu left ov	ver

Big Ideas	Details	Unit: Stoichiometry
		Homework Problems
		Set #1: Scaffolded
	1. Coi	nsider the reaction: 2 Si ₂ H ₂ + 5 O ₂ \rightarrow 4 SiO ₂ + 2 H ₂ O
	а	. If you had 8 mol Si $_2H_2$, how many moles of O $_2$ would you need for the above reaction?
		Answer: 20 moles O ₂
	b	. If you had 15 mol O ₂ , how many moles of Si ₂ H ₂ would you need for the above reaction?
	с	Answer: 6 mol Si ₂ H ₂ . If you had 8 mol Si ₂ H ₂ and 15 mol O ₂ , which reactant would be limiting?
	с	Answer: O ₂ . How many moles of the non-limiting reactant would be left over?
	e	Answer: 2 mol Si ₂ H ₂ left over . What is the theoretical yield of SiO ₂ , in moles? (<i>I.e.</i> , how many moles of SiO ₂ would you make?)
		Answer: 12 mol SiO ₂

Big Ideas	Details		Unit: Stoichiometry
	2.	Cons	ider the reaction: 3 Ca (s) + 2 AlCl ₃ (aq) \rightarrow 3 CaCl ₂ (aq) + 2 Al (s)
		a.	If you had 6 mol Ca, how many moles of AlCl₃ would you need for the above reaction?
			Answer: 4 mol AlCl₃
		b.	If you had 8 mol AlCl ₃ , how many moles of Ca would you need for the above reaction?
			Answer: 12 mol Ca
		C.	If you had 6 mol Ca and 8 mol AICI3, which reactant would be limiting?
		d.	Answer: Ca How many moles of the non-limiting reactant would be left over?
			Answer: 4 mol AlCl₃ left over
		e.	What is the theoretical yield of $CaCl_2$, in moles? (<i>I.e.</i> , how many moles of $CaCl_2$ would you make?)
			Answer: 6 mol CaCl ₂

Big Ideas	Details	Unit: Stoichiometry
		Homework Problems
		Set #2: Unscaffolded
	1.	How many moles of H ₂ O would be produced if 3.5 mol H ₂ react with 1.5 mol O ₂ in the reaction: $2 H_2 + O_2 \rightarrow 2 H_2O$
		(Note: because amounts were given for both reactants, this is a limiting reactant problem.)
	2	Answer: 3.0 mol H_2O
	Ζ.	$S_8 + O_2 \rightarrow SO_3$
		Which reactant is limiting, and how much of the other reactant would be left over?
	3.	Answer: O ₂ is limiting; there will be3.7 mol S ₈ left over. 325 g of H ₂ O is poured onto a 450. g block of sodium metal. The equation for this reaction is: $2 \text{ Na} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ Na}\text{OH} + \text{H}_2$ a. What is the limiting reactant?
		 Answer: H₂O b. If the reaction temperature is 227 °C (500. K) at a pressure of 1 atm, how many liters of H₂ gas are produced? (<i>Hint: find the moles of H₂ produced and use the ideal gas law to calculate the volume.</i>)
		Answer: 369 L H ₂

Big Ideas	Details		Unit: Stoichiometry
	4.	5.00 g Z	In are reacted with 100. mL of 1.00 M HCl in the reaction:
			Zn (s) + 2 HCl (aq) \rightarrow ZnCl ₂ (aq) + H ₂ (g)
		a.	Determine which reactant is limiting.
			Answer: HCI
		b.	Determine the number of <i>grams</i> of $ZnCl_2$ that will be produced.
			Answer: 6.82 g ZnCl_2
		C.	If the reaction conditions are 177 °C (remember to convert to
			Kelvin!) and 1 atm pressure, determine the number of liters of H_2
			gas that will be produced.
			Answer: 1.85 H ₂
		Ь	Determine the mass in grams of the non-limiting reactant that will
		u.	be left over.
			Answer: 1.73 g Zn

Use this space for summary and/or additional notes: