Enthalpy of Formation

Unit: Thermochemistry (Heat)

MA Curriculum Frameworks (2016): HS-PS1-4

Mastery Objective(s): (Students will be able to...)

- Determine the enthalpy of formation for selected compounds by looking up data in a table.
- Identify the formation of compounds as spontaneous or non-spontaneous based on the sign of the enthalpy of formation.

Success Criteria:

- Enthalpy of formation has the correct sign and the correct units.
- Compounds are correctly identified as forming spontaneously and not forming spontaneously based on the sign of their enthalpies of formation.

Tier 2 Vocabulary: formation, spontaneous

Language Objectives:

- Explain how to find the enthalpy of formation of a compound.
- Explain how to determine whether formation of a compound is spontaneous or non-spontaneous.

Notes:

Although free energy is the best predictor of whether a reaction happens, focusing on just the changes in enthalpy can be more practical for several reasons.

- 1. Entropy cannot be measured, but must be calculated based on other measurements and calculations, such as enthalpy and equilibrium. For this reason, entropy numbers are difficult to obtain and are often not available for reactions of interest.
- 2. Free energy depends on the temperature. (Recall that G = H TS) If a reaction is producing or consuming heat, the temperature will be changing during the reaction, which means free energy calculations will require careful measurements and complex, calculus-based equations. Enthalpy does not depend on temperature, which means enthalpy numbers can be used directly regardless of the temperature at which they were measured.
- 3. Enthalpy measurements can be used directly to calculate the thermal energy (heat) produced or consumed by a reaction.

Use this space for summary and/or additional notes:

Enthalpy of Formation

		Enthalpy of Forma	llion	Page: 460
Big Ideas	Details		Unit: Th	nermochemistry (Heat)
	The concept of e pure element to	enthalpy of formation is that be zero [*] , then:	if we define the e	nthalpy content of a
		lpy content of a compound on he compound.	can be measured b	by the reactions that
	forming it	lpy content of a compound e s chemical bonds, and theref hose bonds.		
		py of formation: (ΔH_f^o) the a released when a compound		y (recoverable/usable
	energy to break and forming tho	ecular Forces" section startir intramolecular bonds (bond se bonds releases energy. T ithin a molecule).	s between one mo	plecule and another),
	less energy than formed, the exc no longer enoug	npound forms spontaneousl the elements that it is form ess energy is given off as hea th energy for the compound hese compounds have a neg	ed from. When that. Once that ener to spontaneously	ne compound is gy is released, there is disintegrate, unless
	compound is un	nergy is required to form a c stable, and when a small am amount of energy is released nation.	ount of energy is	added to break the
	nuclear bonds, i due to deformat atoms, nuclei, e ignoring these fa	alpy includes internal energy, w nternal induced electric or mag tion of solids, <i>etc.</i> , as well as en lectrons, <i>etc.</i> Saying that the er actors—remember that enthalp to be the total of those energie	netic dipole momer ergy due to motion nthalpy is zero does by can be negative.	nt, stress-strain energy of the molecules, not mean we are We are simply choosing

Use this space for summary and/or additional notes:

_

	Enthalpy of Formation Page: 461			
Big Ideas	Details Unit: Thermochemistry (Heat)			
	Determining Enthalpy of Formation			
	The enthalpy of formation is defined as the energy that would need to be <i>added</i> in order to form a compound or ion directly from its elements.			
	This means that pure elements in their natural state by definition have an enthalp of formation of zero, because it takes no energy to form an element from its elements. This is true even for elements that are polyatomic in their natural state such as N_2 , O_2 , Cl_2 , F_2 , Br_2 , l_2 , P_4 and S_8 ; even though these elements contain one of more chemical bonds, their enthalpy of formation is still defined to be zero.			
	If a compound or ion forms spontaneously, the process must <i>release</i> energy. This means that compounds or ions that form spontaneously have <i>negative</i> enthalpies of formation. (Adding negative energy is mathematically the same as releasing energy.)			
	Enthalpies of formation (ΔH_f^o) (and also entropies of formation) of selected compounds and elements are listed in "Table BB. Thermodynamic Data" in your Chemistry Reference Tables, on page 519.			
	Examples			
	The standard enthalpy of formation of CaCl ₂ is $-795.8 \frac{kJ}{mol}$. This means we would			
	need to add -798.2 kJ to make one mole of CaCl ₂ from elemental Ca and Cl ₂ .			
	Adding a negative amount of heat means the reaction actually releases 795.8 $\frac{kJ}{mol}$ of heat. (Note that 795 kJ, or 795 800 J, is a lot of energy.)			
	The standard enthalpy of formation of C_2H_2 (acetylene) is +226.7 $\frac{kJ}{mol}$. This means that acetylene does not form spontaneously, and we need to add 226.7 kJ of heat energy to produce one mole of acetylene gas. That energy will be released as heat when acetylene combusts to form CO_2 and H_2O .			
	Use this space for summary and/or additional notes:			

Enthalpy of Formation

Big Ideas	Details Unit: Thermochemistry (Heat)		
	Homework Problem		
	Based on enthalpy of formation (ΔH_f^o) data in "Table BB. Thermodynamic Data" on page 519 of your Chemistry Reference Tables, rank the following ten compounds in order, from least stable to most stable.		
	AgCl, Al ₂ O ₃ , C ₂ H ₂ , H ₂ O, CO ₂ , N ₂ O, CuSO ₄ , H ₂ , MgSO ₄ , Si		
	1		
	2		
	3		
	4		
	5		
	6		
	7		
	8		
	9		
	10		

Use this space for summary and/or additional notes: