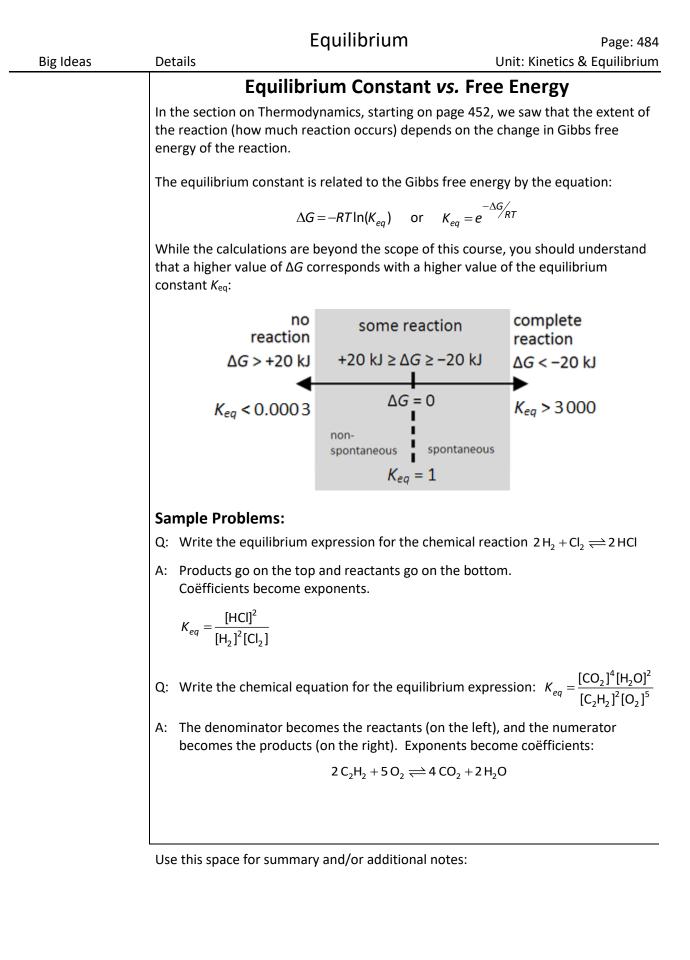
	Equilibrium Page: 481
Ideas	Details Unit: Kinetics & Equilibrium
	Equilibrium
	Unit: Kinetics & Equilibrium
	MA Curriculum Frameworks (2016): HS-PS1-6
	Mastery Objective(s): (Students will be able to)
	 List and explain factors that affect the equilibrium of a chemical reaction.
	 Write equilibrium expressions from chemical equations and chemical equations from equilibrium expressions.
	Success Criteria:
	 Equilibrium expressions have products on top and reactants on the bottom.
	 Equilibrium expressions have coëfficients shown as exponents.
	Tier 2 Vocabulary: forward, backward, expression
	Language Objectives:
	• Explain how different factors affect the equilibrium of a chemical reaction.
	Notes:
	reversible reaction: a reaction that proceeds in both forward and backward directions. Usually written with double half-arrows:
	$N_2 (g) + 3 H_2 (g) \rightleftharpoons 2 N H_3 (g)$
	dynamic chemical equilibrium: reaction is happening in both directions, but the changes balance each other, so the concentrations of reactants & products remain constant. At equilibrium:
	rate _{forward reaction} = rate _{reverse reaction} or $k_f = k_r$
	<u>concentration</u> : the amount of a compound dissolved in a given amount of solution,
	usually expressed in $\frac{\text{mol}}{L}$ (moles of the compound per liter of solution).

Big Ideas


Details

Arrows Used in Chemical Equations			
Arrow	Meaning		
$A + B \rightarrow C + D$	A + B react to produce C + D Either there is little or no reverse reaction, or no information is given about equilibrium.		
A+B ⇐⇒ C+D	A + B are in equilibrium with C + D No information is given about whether products or reactants are favored.		
A+B ╤ C+D	A + B are in equilibrium with C + D Products are favored. (<i>I.e.,</i> the concentrations of products are higher than the concentrations of reactants.)		
$A+B \xrightarrow{\sim} C+D$	A + B are in equilibrium with C + D Reactants are favored. (<i>I.e.,</i> the concentrations of reactants are higher than the concentrations of products.)		
A↔B	A and B are different resonance structures of the same compound. This is different from a chemical reaction that is at equilibrium.		

Use this space for summary and/or additional notes:

Fauilibrium

		Equilibrium	Page: 483
leas	Details		Unit: Kinetics & Equilibrium
	equilibrium exp	pression: a mathematical expression	relating the concentrations of
	the produc	ts and reactants at equilibrium. For the	he reaction:
		$N_2 + 3H_2 \rightleftharpoons 2NH_3$	
	the equilibr	rium expression is:	
	the equilibri		
	$\mathcal{K}_{eq} = \frac{[NH_3]^2}{[N_2][H_2]^3}$		
		$[N_2][H_2]^3$	
	where [NH	$_3]$ means the molarity of NH $_3$ (the con	centration in $rac{mol}{L}$).
	to react, or this 4-way molecules i	rium expression comes from collision he N_2 and 3 H_2 molecules need to find collision is related to the product of th involved, <i>i.e.</i> , $[N_2][H_2][H_2][H_2]$ or $[N_2]$ s in the equation became exponents in	each other. The probability of the concentrations of each of the $[H_2]^3$. Notice that the
	collision is t	e reaction requires 2 NH ₃ molecules to the product of the concentrations, [N "2" became the exponent.	
	top and rea for the forv course, but means that	uilibrium expression, we write the con actants on the bottom. (The reason fo ward and reverse reactions. Rate laws are studied in AP Chemistry.) Howev an equilibrium constant greater than and an equilibrium constant less than	or this comes from the rate laws s are beyond the scope of this ver, for our purposes, it also n 1 means we have more
	equilibrium cor	$nstant(K_{eq})$: when we plug the concer	ntrations (in mol) for each of the
		nd reactions into the equilibrium expr	-
	If $K_{eq} > 1$ the	en there are more products than reac "equilibrium lies to the right".	
		en there are more reactants than pro "equilibrium lies to the left".	ducts, and we say that
		en there are equal amounts of reacta that the reactants and products are e	
	<i>K_{eq}</i> depend temperatur	s on temperature, but is constant for re.	a given reaction at a given

Equilibrium

		Equilibrium	Page: 4
Big Ideas	Details		Unit: Kinetics & Equilibri
	Q: Calcula	te the value of the equilibrium constant f	or the reaction
	2 NOBr	\Rightarrow 2 NO + Br ₂ if the concentration of NOI	Br is 3.00 M, the concentratio
		s 0.750 M, and the concentration of Br_2 is	
	A: The eq	uilibrium expression is:	
		$K_{eq} = \frac{[\text{NO}]^2[\text{Br}_2]}{[\text{NOBr}]^2}$	
		κ_{eq}^{-} [NOBr] ²	
	Pluggir	ng in the concentrations, we get:	
		() ² ()	
		$K_{eq} = \frac{(0.750)^2 (0.200)}{3.00^2} =$	0.0125
		²⁴ 3.00 ²	
	Noto th	nat the units for equilibrium constants are	tricky bacausa aach
		-	
		itration is in $\frac{\text{mol}}{L}$. This means that if a con	
	becom	$(\frac{mol}{L})^2 = \frac{mol^2}{L^2}$. This means that every eq	uilibrium constant has its owr
	units, c	lepending on the number of molecules th	at take part in the forward an
	reverse	e reactions.	
	E	han an 1916 at the state of the state of the	
		he equilibrium expression, the units of the	e equilibrium constant for this
	expres	sion happens to be:	
		$\left(\frac{\text{mol}}{\text{mol}}\right)^2\left(\frac{\text{mol}}{\text{mol}}\right)$	
		$\frac{\left(\frac{\text{mol}}{L}\right)^2\left(\frac{\text{mol}}{L}\right)}{\left(\frac{\text{mol}}{L}\right)^2} = \frac{\text{mol}}{L}$	
	Workir	ng with the units for the equilibrium const	ant is beyond the scope of th
	course		

Equilibrium

Big Ideas	Details	Equilibrium	Unit: Kinetics & Equilibriu
		Homework Probl	ems
	Write the ex reactions.	pression for the equilibrium constants f	or each of the following
	1. Xe-	$+3F_2 \rightleftharpoons 2XeF_6$	
	2. CH ₄	$+2 H_2 S \Longrightarrow CS_2 + 4 H_2$	
	3. 3 CC	$O_2 + 4H_2O \rightleftharpoons C_3H_8 + 5O_2$	
		te the chemical equation for the equilib ression:	rium system given by the
	K _{eq}	$=\frac{[H_2O]^2[O_2]}{[H_2O_2]^2}$	
		te the chemical equation for the equilib ression:	rium system given by the
	K _{eq}	$=\frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$	
		te the chemical equation for the equilib ression:	rium system given by the
	K _{eq}	$=\frac{[HCI]^{4}[O_{2}]}{[H_{2}O]^{2}[CI_{2}]^{2}}$	
	Use this spa	ce for summary and/or additional notes	:

	Detaile	Equilibrium	Page: 487
Big Ideas	Details 7.	A reaction vessel contains 0.150 M CH ₄ , 0.233 N 0.513 M CO. If the equilibrium reaction is CH ₄ + equilibrium expression and calculate the value of	$+H_2O \rightleftharpoons CO + 3H_2$, write the
	8.	Answer: $K_{eq} = 0.255$ A 10 L flask contains 0.128 mol of CO, 0.155 mo CH ₃ OH. If the equilibrium reaction is CH ₃ OH \rightleftharpoons equilibrium expression and calculate the value of (<i>Note: you will need to divide each number of n</i> <i>concentrations in</i> $\frac{mol}{L}$.)	$CO + 2H_2$, write the of K_{eq} .
		Answer: $K_{eq} = 0.00126$	

Use this space for summary and/or additional notes: