Le Châtelier's Principle

Unit: Kinetics & Equilibrium

MA Curriculum Frameworks (2016): HS-PS1-6

Mastery Objective(s): (Students will be able to...)

• Use Le Châtelier's Principle to predict a shift in equilibrium in response to a change.

Success Criteria:

• Prediction correctly describes the shift in equilibrium when the concentration of one chemical species is changed.

Tier 2 Vocabulary: stress

Language Objectives:

• Explain how a change provokes a response.

Notes:

If a reaction is at equilibrium, the reaction will resist any change with a corresponding change that shifts the reaction back to its equilibrium. Because K_{eq} is a constant, after the equilibrium shifts, the value of K_{eq} will be the same as it was before the change.

In plain English, if you change something, the equilibrium will shift to partly undo the change. This principle is called Le Châtelier's Principle, named after the French chemist Henry Louis Le Châtelier who first proposed the idea.

For example, consider the reaction:

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g) + 92.1 kJ$$

For this reaction, $K_{eq} = \frac{[NH_3]^2}{[N_2][H_2]^3} = 835$ at 25 °C.

Suppose we started with $[N_2] = 0.05 \text{ M}$, $[H_2] = 0.3 \text{ M}$, and $[NH_3] = 1.06 \text{ M}$.

If we add more $[H_2]$, the reaction would use more H_2 , and make more NH_3 . If we kept adding H_2 until $[H_2] = 0.4$ M, we would have $[N_2] = 0.026$ M, and $[NH_3] = 1.18$ M. As you can see, adding more H_2 caused the reaction to use up more N_2 and make more NH_3 .

Use this space for summary and/or additional notes:

Le Châtelier's Principle

Details Unit: Kinetics & Equili Le Châtelier's Principle tells us that we don't have to perform the equilibrium calculation to qualitatively predict what will happen. We can just look at the equation:

$$N_2$$
 (g) + 3 H_2 (g) \Rightarrow 2 NH_3 (g) + 92.1 kJ

if we add more H_2 , the equilibrium will shift to use more of it up. This means the equilibrium will shift to the right, also using up more N_2 and making more NH_3 .

On the other hand, if we added NH_3 , the equilibrium would instead shift to the left to use up some of the NH_3 , and make more N_2 and H_2 .

Action	Equilibrium shift	
Add N_2 or H_2	to the right	
Remove N_2 or H_2	to the left	
Add NH ₃	to the left	
Remove NH₃	to the right	
Increase the temperature (add heat)	to the left	

Note that the value of K_{eq} is different at different temperatures. Adding reactants or products doesn't change the value of K_{eq} , but changing the temperature does. Le Châtelier tells us that adding heat must shift the equilibrium to the *left*. The equilibrium shift occurs because increasing the temperature results in a lower value of K_{eq} for this equation.

Quantitative equilibrium calculations and the relationship between the equilibrium constant and thermodynamics are studied in more depth in AP[®] Chemistry.

Use this space for summary and/or additional notes:

Big Ideas

Le Châtelier's Principle

Big Ideas	Details		Unit: Kinetics & Equilibrium	
	Homework Problems			
	Consider the chemical equation:			
	$6 H_2 (g) + P_4 (g) \rightleftharpoons 4 PH_3 (g) + 53.5 kJ$			
	1. Indicate which direction the equilibrium would shift as a result of each of the following:			
	a. Adding P ₄	c. Rem	noving H ₂	
	b. Removing PH ₃	d. Deci	reasing the temperature	
	2. Write the equilibrium	e equilibrium expression for the above reaction.		
	 The value of K_{eq} for th equilibrium at 25 °C, t of P₄ is 0.025 M, what 	or this reaction is 4.44 at 25 °C. If the reaction is at 'C, the concentration of H_2 is 1.00 M and the concentration /hat is the concentration of PH_3 ?		
	Answer: [PH₃] = 0.58 4. If the reaction is coole increases to 4.77. Is t Châtelier's Principle ir	M d to 4 °C, the value of the e his consistent with the pred question #1d above? Expla	quilibrium constant iction made by Le ain.	
	Use this space for summary a	nd/or additional notes:		