	pKa & Buffers	Page: 504
as	Details	Unit: Acids & Bases
	pK _a & Buffers	
	Unit: Acids & Bases	
	MA Curriculum Frameworks (2016): N/A	
	Mastery Objective(s): (Students will be able to)	
	• Calculate pH from $[H^+]$ and pOH from $[OH^-]$.	
	 Identify acids and bases from their pK_a values. 	
	 Select an appropriate indicator for a desired pH ran 	ige.
	Success Criteria:	•
	 pH and pOH are calculated correctly. 	
	 Acids and bases are correctly identified from their p 	oKa values.
	• Indicator changes color in a pH range that includes	the pH of the given acid or
	base.	
	Tier 2 Vocabulary: acid, base, indicator	
	Language Objectives:	
	 Explain why higher [H⁺] results in a lower pH. 	
	Notes:	
	Acid-base chemistry is largely equilibrium chemistry in wh	nich the solvent, usually
	H ₂ O, plays a significant role.	, ,
	As stated earlier, water dissociates into H ⁺ and OH ⁻ ions.	Acids and bases change
	the concentrations of H ⁺ and OH ⁻ ions in solution, which c	can have significant effects
	acid dissociation constant (K _a): is the equilibrium constant acid. For the "generic" acid HA:	t for the dissociation of an
	[H ⁺][A ⁻]	
	$\kappa_a =$	
	The greater the K_a value, the stronger the acid. (Rem	ember your negative
	exponents! <i>E.g.</i> , 10^{-5} is <u>greater</u> than 10^{-7} .)	. –
	$\underline{pK_a} = -\log K_a$ (analogous to pH). The lower (or more neg	ative) the p K_a , the
	stronger the acid.	
	When exactly 50 % of the acid HA is neutralized, [HA]	= [A⁻], and the above
	formula reduces to $K_a = [H^+]$. This means that pH = p <i>I</i>	K _a when the acid is half-
	neutralized.	

pKa & Buffers

Big Ideas	Details Unit: Acids & Bases
	base dissociation constant (K _b): is the equilibrium constant for the dissociation of a base. For the "generic" base B:
	$K_{b} = \frac{[HB^{+}][OH^{-}]}{[B]}$
	We can use the concept of pK_a to add to our definitions of strong acids and bases:
	strong acid: an acid with a pK_a lower than that of H_3O^+ (1.0). Strong acids include HCl, HBr, HI, H_2SO_4 and HNO ₃ .
	Strong acids dissociate completely into H^+ and the corresponding anion. The dissociated H^+ converts H_2O molecules to H_3O^+ ions.
	weak acid: an acid with a pK _a higher than that of H ₃ O ⁺ (1.0), but less than 7.0 (the pH of a neutral solution at 25 °C).
	strong base: a base whose conjugate acid is weaker than H_2O (<i>i.e.</i> , whose conjugate acid has a pK _a higher than 14). Hydroxides are strong bases because they release OH ⁻ . However, note that aqueous Mg(OH) ₂ <u>acts</u> more like a weak base because the limited solubility of Mg(OH) ₂ results in a concentration of OH ⁻ that is similar to that produced by a weak base.
	Strong bases either release OH ⁻ ions directly into solution, or form OH ⁻ ions by pulling H ⁺ off of H ₂ O molecules.
	weak base: a base whose conjugate acid has a pK_a higher than 7.0 but less than 14.

Use this space for summary and/or additional notes:

pKa & Buffers

Big Ideas	Details Unit: Acids & Bases		
	Buffers		
	<u>buffer</u> : a weak acid or base that prevents the pH of a solution from changing drastically until it neutralizes the buffer.		
	For example, if you have a fish tank, you want to keep the pH from getting too low, you could add NaHCO ₃ . The reaction:		
	$H^+ + HCO_3^- \longrightarrow H_2CO_3$		
	occurs around pH 6.4. As acid accumulates in your fish tank, it will react with the HCO_3^- ions, and the pH will remain above 6.4 until all of the HCO_3^- ions have been converted to H_2CO_3 .		
	Buffers can work in either direction—to absorb acid or base. If you use a combination of two buffers (one above and one below your desired pH), you can keep the pH within a narrow range.		
	In fact, water acts as a buffer, but over a very wide pH range. The pH of an aqueous solution is limited, because stronger acids just convert more H_2O to H_3O^+ , and stronger bases just convert more H_2O to OH^- . The presence of water effectively keeps the pH between 1 and 14. In fact, the reason your biology teacher taught you that the pH range goes from 1–14 is because acid-base reactions in biology all happen in aqueous environments.		

Use this space for summary and/or additional notes:

		pKa & Buffers	Page: 507		
Big Ideas	Details		Unit: Acids & Bases		
	Homework Problems				
	 Rank the following acids from strongest to weakest, based on their pK_a values. Refer to of your Chemistry Reference Tables. 				
	Based on pKa values in "Table P. <i>pKa</i> Values for Common Acids" on page 513 of your Chemistry Reference Tables, rank the following ten compounds in order, from the strongest acid to the strongest base. HF, HCN, HCl, HPO4 ²⁻ , HNO3, H2O, CH3COOH, NH4 ⁺ , H2SO4, H2CO3				
	1.	5	8		
	2.	6	9		
	3.	7	10		
	4.				
	11.	The wastes from fish in a fish tank produce acids, whi water in the tank to decrease over time. Which acid- table of <i>pKa</i> Values for Common Acids would be most the pH from dropping below 7.0. Explain.	ch cause the pH of the base pair from the effective at keeping		
	Use this space for summary and/or additional notes:				