Centripetal Motion

Unit: Kinematics (Motion) in Multiple Dimensions

NGSS Standards/MA Curriculum Frameworks (2016): N/A

AP[®] Physics 1 Learning Objectives/Essential Knowledge (2024): 2.9.A, 2.9.A.1,

2.9.A.1.i, 2.9.A.1.ii, 2.9.A.2, 2.9.A.2.i, 2.9.A.3, 2.9.A.4, 2.9.A.5, 2.9.A.5.i, 2.9.A.5.ii, 2.9.A.5.iii

Mastery Objective(s): (Students will be able to ...)

• Calculate the tangential and angular velocity and acceleration of an object moving in a circle.

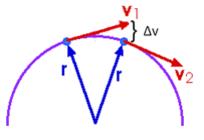
Success Criteria:

- Correct quantities are chosen in each dimension (r, ω , ω_o , α , a and/or θ).
- Algebra is correct and rounding to appropriate number of significant figures is reasonable.

Language Objectives:

- Explain why an object moving in a circle must be accelerating toward the center.
- Correctly identify quantities with respect to type of quantity and direction in word problems.
- Assign variables correctly in word problems.

Tier 2 Vocabulary: centripetal, centrifugal


Labs, Activities & Demonstrations:

- Have students swing an object and let it go at the right time to try to hit something. (Be sure to observe the trajectory.)
- Swing a bucket of water in a circle.

Notes:

If an object is moving at a constant speed around a circle, its speed is constant, its direction keeps changing as it goes around. Because <u>velocity</u> is a vector (speed and direction), this means its velocity is constantly changing. (To be precise, the magnitude is staying the same, but the direction is changing.)

Because a change in velocity over time is acceleration, this means the object is constantly accelerating. This continuous change in velocity is toward the center of the circle, which means there is continuous acceleration toward the center of the circle.

Use this space for summary and/or additional notes:

		Centripetal Motion	Page: 249		
Big Ideas	Details	Unit: Kinematics (Motion) ir	۱ Multiple Dimensions		
		ration (<i>a_c</i>): the constant acceleration of an ol tion that keeps it rotating around the center a	•		
	The equation [*] for centripetal acceleration (a_c) is:				
		$a_c = \frac{v^2}{r} = \frac{(r\omega)^2}{r} = r\omega^2$			
	(The derivation of this equation requires calculus, so it will not be presented				
	Sample Problem:				
	rotation of 10 weight? How	ung from the end of a string that is 0.65 m lo revolutions in 6.5 s. What is the centripetal a many "g's" is that? (<i>I.e.,</i> how many times the centripetal acceleration?)	acceleration of the		
	A: There are two	ways to solve this problem.			
	Without using	angular velocity:			
	In each rev	volution, the object travels a distance of $2\pi r$:			
		$s_{rev} = 2\pi r = (2)(3.14)(0.65) = 4.08 \mathrm{m}$	ı		
	The total o	distance for 10 revolutions is therefore: s = 0	(4.08)(10) = 40.8 m		
	The veloci	ty is the distance divided by the time: $v = \frac{d}{t}$	$=\frac{40.8}{6.5}=6.28\frac{m}{s}$		
	Finally, a_c	$=\frac{v^2}{r}=\frac{(6.28)^2}{0.65}=60.7\frac{m}{s^2}$			
	This is $\frac{60}{10}$	$\frac{7}{0}$ = 6.07 times the acceleration due to gravit	ÿ.		
AP®	Using angular	velocity:			
	The angula	ar velocity is:			
	$\left(\frac{10 \text{ rev}}{6.5 \text{ s}}\right)$	$\left(\frac{2\pi \text{ rad}}{1 \text{ rev}}\right) = \frac{20\pi}{6.5} = 9.67 \frac{\text{rad}}{\text{s}}$			
	The centri	petal acceleration is therefore:			
	$a_{c} = r\omega^{2}$				
	e	$(9.67)^2 = (0.65)(93.44) = 60.7 \frac{m}{s^2}$			
		$\frac{7}{0}$ = 6.07 times the acceleration due to gravit	y.		
	honors courses). Eq	elates to angular motion (which is studied in AP® Physic uations or portions of equations with angular velocity (ly only to the AP® course.			

Use this space for summary and/or additional notes:

Centrinetal Motion

		Centripetal N	/lotion	Page: 250
Big Ideas	Details	Uni	t: Kinematics (Motion) in Mul	tiple Dimensions
	Centripetal motio	n is a form of simple	harmonic motion (repetitive i	motion) and can
	be described usir	g time period (<i>T</i>) and	frequency (<i>f</i>).	
	(time) period (T,	unit = s): The amount	of time that it takes for an ol	oject to
			riodic (repetitive) motion. In	
	-	otion, the period is th nplete revolution.	e amount of time it takes for	the object to
	frequency (f, unit	= Hz = $\frac{1}{s}$): The num	ber of cycles of repetitive mo	tion per unit of
	time. Freque	ncy and period are re	ciprocals of each other, <i>i.e.,</i>	$f=rac{1}{T}$ and
	$T = \frac{1}{f}$			
	Because $v_{avg} = \frac{d}{t}$	and the distance arou	nd the circle is the circumfer	ence, $C = 2\pi r$,
		eriod is equal to $T = \frac{2\pi}{N}$		
		ese quantities and relation unit, starting on page	ationships further in the <i>Intro</i> e 497.	duction: Simple

Use this space for summary and/or additional notes:

Big Ideas	Details	Unit: Kinematics (Motion) in Multiple Dimensions	
	Homework Problem		
	1.	One of the demonstrations we saw in class was swinging a bucket of water in a vertical circle without spilling any of the water.	
		a. (M) Explain why the water stayed in the bucket.	
		b. (M) If the combined length of your arm and the bucket is 0.90 m, what	
		is the minimum tangential velocity that the bucket must have in order to not spill any water?	
		Answer: 3.0 ^m / _s	
		$\frac{1}{s}$	

Use this space for summary and/or additional notes: