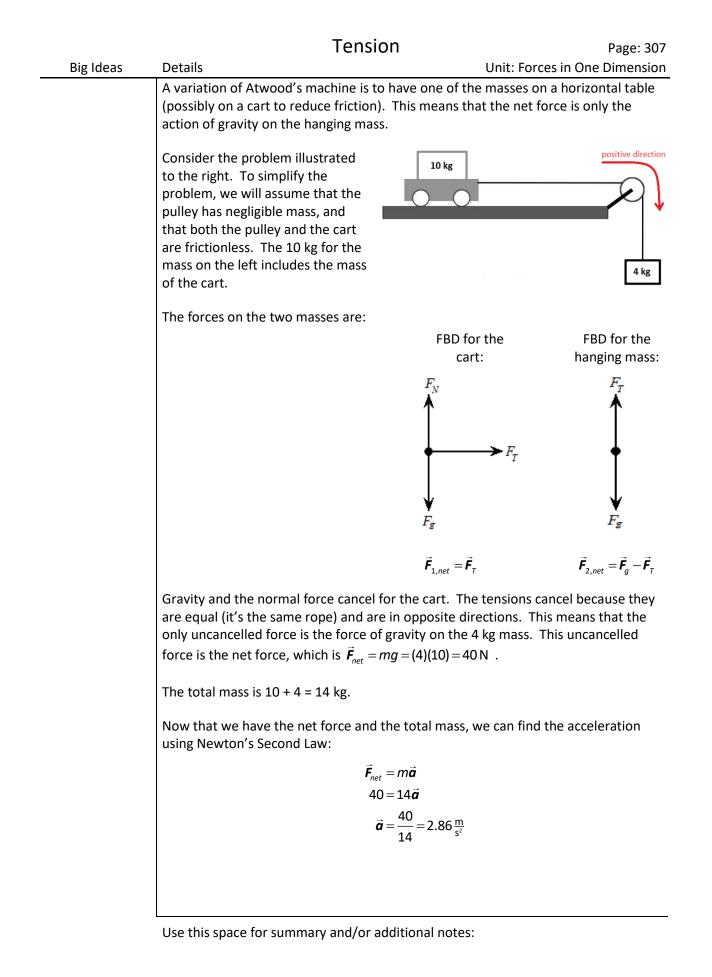
deas	Details Unit: Forces in One Dimension
	Tension
	Unit: Forces in One Dimension
	NGSS Standards/MA Curriculum Frameworks (2016): N/A
	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024): 2.3.A, 2.3.A.1, 2.3.A.2, 2.3.A.3, 2.3.A.3.i, 2.3.A.3.ii, 2.3.A.3.iii, 2.3.A.3.iv,
	Mastery Objective(s): (Students will be able to)
	 Set up and solve problems involving pulleys and ropes under tension.
	Success Criteria:
	• Expressions involving tension and acceleration are correct including the sign (direction).
	• Equations for all parts of the system are combined correctly algebraically.
	 Algebra is correct and rounding to an appropriate number of significant figures is reasonable.
	Language Objectives:
	• Explain how the sign of all of the forces in a pulley system relate to the direction that the system will move.
	Tier 2 Vocabulary: pulley, tension
	Labs, Activities & Demonstrations:
	Atwood machine
	Notes:
	tension (\vec{F}_{τ} , $\vec{\tau}$): the pulling force on a rope, string, chain, cable, etc.
	Tension is its own reaction force; tension always travels through the rope in both directions at once, and unless there are additional forces between one end of the rope and the other, the tension at every point along the rope is the same. The direction of tension is always along the rope. For example, in the following picture a blindfolded person pulls on a rope
	with a force of 100 N. The rope
	transmits the force to the scale, which transmits the force to the other rope
	and then to the wall. This causes a
	reaction force (also tension) of 100 N
	in the opposite direction.
	The scale attached to the rope
	measures 100 N, because that is the amount of force (tension) that is stretching the
	spring in the scale.
	Luce this space for summary and for additional notas:
	Use this space for summary and/or additional notes:

Page: 301

	Tension	Page: 302	
Big Ideas	Details If we replace the brick wall with a person who is pulling with a force of 100 N, the blindfolded person has no idea whether the 100 N of resistance is coming from a brick wall or another person. Thus, the forces acting on the blindfolded person (and the scale) are the same. Of course, the scale doesn't "know" either, so it still reads 100 N. A popular demonstration in physics class	rooms is to set up the equ	in One Dimension
		reading = ?	

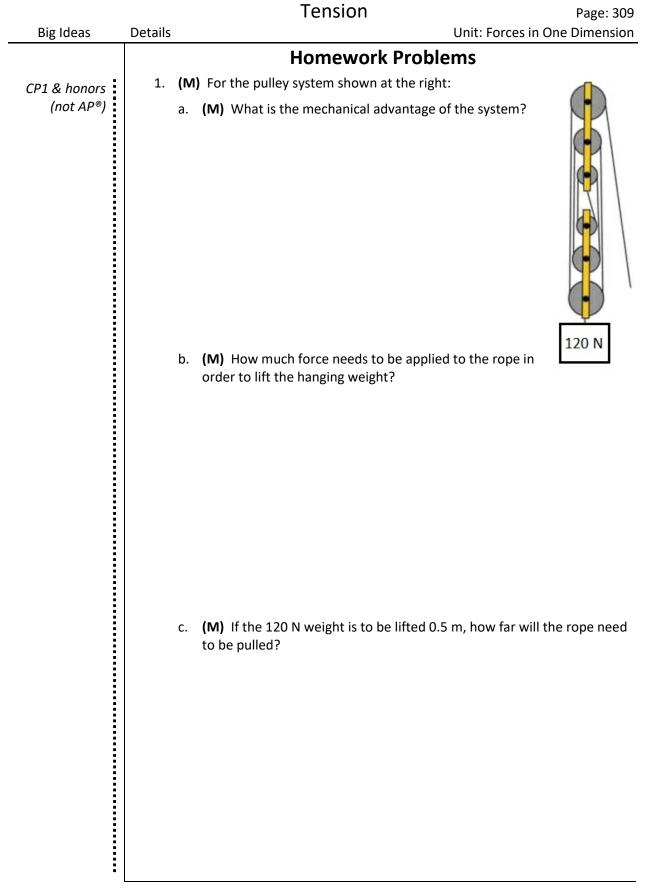
	Tension Page: 303
Big Ideas	Details Unit: Forces in One Dimension
	Pulleys
	pulley: a wheel used to change the direction of tension on a rope
	The tension remains the same in all parts of the rope.
	In the example at the right (with one pulley), it takes 100 N of force to lift a 100 N weight. The pulley
	changes the direction of the force, but the amount of force does not change. If the rope is pulled 10 cm, the 100 N
	weight is lifted by the same 10 cm.
	Up to this point, we have chosen a single direction (left/right or up/down) to be the positive direction. With pulleys, we usually define the positive and
	negative directions to follow the rope. In this example, we would most likely choose the positive direction to be the direction that the rope is pulled. Instead of saying that positive is upward for the weight and 100 N
	downward for the hook, we would usually say that the positive direction is counter-clockwise (신), because
	that is the direction that the pulley will turn.
CP1 & honors	Mechanical Advantage
(not AP®)	If we place a second pulley just above the weight that we want to lift, two things will happen when we pull on the rope:
	1. As we pull on the rope, there is less rope between the two pulleys. This means the lower pulley will move upward.
	 2. The rope going around the lower pulley will be lifting the 100 N weight from both sides. This means each side will support half of
	the weight (50 N). Therefore, the tension in every part of the rope is 50 N, which means it takes half as much force to lift the
	weight. 100 N
	3. The length of rope that is pulled is divided between the two sections that go around
	the lower pulley. This means that pulling 10 cm

	rension	Page: 30			
Big Ideas	Details	Unit: Forces in One Dimensio			
CP1 & honors (not AP®)	Notice that when the force is cut in half, the length pulley is effectively trading force for distance. Later <i>Work</i> & Power unit starting on page 407, we will see work (change in energy). This means using half as n twice as much distance takes the same amount of e	r, in the <i>Introduction: Energy,</i> e that force times distance is nuch force but pulling the rope			
	As you would expect, as we add more pulleys, the for distance increases. This reduction in force is called				
	<u>mechanical advantage</u> : the ratio of the force applied by a machine divided by the force needed to operate it.				
	The mechanical advantage of a pulley system is equal to the number of ropes supporting the hanging weight. It is therefore also equal to the number of pulleys.				
	The mechanical advantage of the above system	is 2:1 (or just 2).			
	If we add a third pulley, we can see that there are now three sections of the rope that are lifting the 100 N weight. This means that each section is holding up ¼ of the weight. This means that the tension in the rope is ½ of 100 N, or 33¼ N, but we now need to pull three times as much rope to lift the weight the same distance. 3 A two-pulley system has a mechanical advantage of 2, because it applies twice as much force to the weight as you need to apply to the rope. Similarly, a 3-pulley system has a mechanical advantage of 3, and so on.	33 ¹ / ₃ N 0 cm 100 N			
	The mechanical advantage of any pulley system equals the number of ropes participating in the lifting.	100 N			
	<u>block and tackle</u> : a system of two or more pulleys (v advantage of 2 or more) that is used for lifting h				
	Use this space for summary and/or additional notes				


Use this space for summary and/or additional notes:

D : 11	Tension	Page: 30		
Big Ideas	Details Unit: Forces in (Jne Dimensioi		
	Atwood's Machine Atwood's machine is named for the English mathematician George Atwood. The machine is a device with a single pulley in which one weight, which is pulled down by gravity, is used to lift a second weight. Atwood invented the machine in 1784 to verify Isaac Newton's equations of motion with constant acceleration.			
	To illustrate how Atwood's experiment works, consider the system to the right. To simplify the problem, we will assume that the rope and the pulley have negligible mass, and the pulley operates with negligible friction. Let us choose the positive direction as the direction that turns the pulley clockwise (ひ). (We could have chosen either direction to be positive, but it makes intuitive sense to choose the direction that the system will move when we release the weights.)	positive direction		
	The force on the mass on the right is its weight, which is $m\vec{g} = (10)(+10) = 100 \text{ N}$. (We use a positive value for \vec{g} because gravity is attempting to pull this weight in the positive direction.)			
	The force on the mass on the left is $m\vec{g} = (5)(-10) = -50 \text{ N}$. (We use a negative value for \vec{g} because gravity is attempting to pull this weight in the positive direction.)	10 kg		
	The net force on the system is therefore $\vec{F}_{net} = \sum \vec{F} = 100 + (-50) = 50$ N	۱.		
	The masses are connected by a rope, which means both masses will ac together. The total mass is 15 kg.	ccelerate		
	Newton's Second Law says:			
	$\vec{F}_{net} = \sum \vec{F} = m\vec{a}$ +50 = 15 \vec{a}			
	$\vec{a} = \frac{50}{15} = +3.\overline{3}\frac{m}{s^2}$			
	<i>I.e.,</i> the system will accelerate at $3.3\frac{\text{m}}{\text{s}^2}$ in the positive direction (clock	wise).		
	Atwood performed experiments with different masses and observed be was consistent with both Newton's second law, and with Newton's eq motion.			
	Notice that the solution to finding acceleration in a problem involving machine is to simply find the net force, add up the total mass, and use	-		

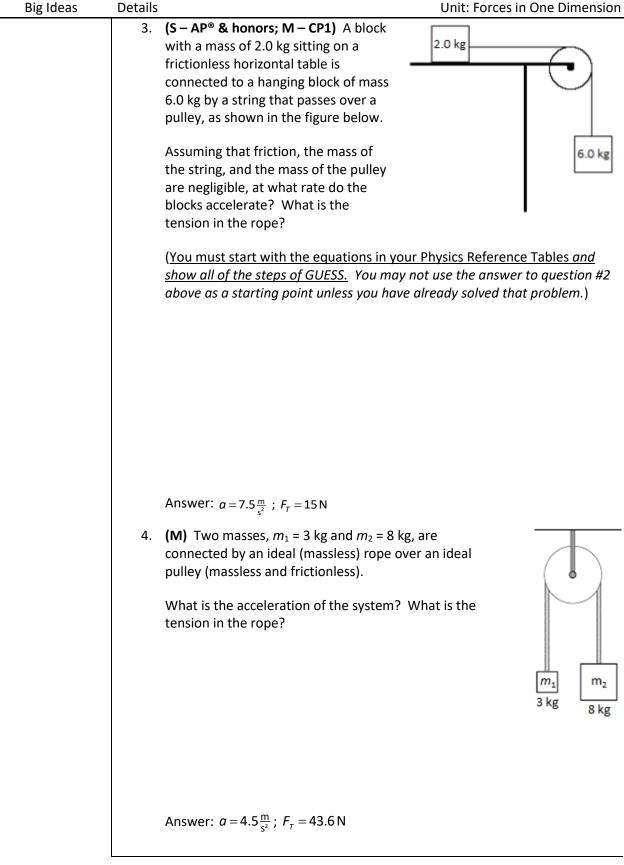
Big Ideas Details Unit: Forces in One Dimension An important feature of Newton's second law is that it can be applied to an entire system, or to any component of the system. For the Atwood's machine pictured, we found that: Entire system: $\vec{F}_{net} = m\vec{a}$ +50 N = (5 kg + 10 kg) (3. $\overline{3} \frac{m}{c^2}$) We can apply Newton's second law to each block separately: $\vec{F}_{1.net} = m_1 \vec{a}$ $\vec{F}_{2,net} = m_2 \vec{a}$ Because the blocks are connected via the same rope, the Block acceleration is the same for both blocks. #1 This means that we can apply Newton's second law to either 10 kg of the blocks to determine the tension in the rope: Block Block #1: #2 $\vec{F}_{1,net} = (\vec{F}_{T} - \vec{F}_{q,1}) \qquad \vec{F}_{1,net} = m_1 \vec{a}$ $(\vec{F}_{\tau} - m_1 \vec{g}) = m_1 \vec{a}$ $[\vec{F}_{\tau} - (5)(10)] = (5)(3.\overline{3})$ $\vec{F}_{\tau} - (-50) = 16.\overline{6}$ $\vec{F}_{\tau} = 66.\overline{6} \text{ N}$ Block #2: (same calculation; yields the same result) We can do the same calculation for Block #2, with the same result for \vec{F}_{τ} . (Remember that we chose the positive direction to be the direction that the system moves. This means the positive direction is up for block #1, but down for block #2.) $\vec{F}_{2.net} = (\vec{F}_{a,2} - \vec{F}_{T})$ $\vec{F}_{2.net} = m_2 \vec{a}$ $(m_2 \vec{g} - \vec{F}_{\tau}) = m_2 \vec{a}$ $[(10)(10) - \vec{F}_{\tau}] = (10)(3.\overline{3})$ $100 - \vec{F}_{T} = 33.\overline{3}$ $\vec{F}_{\tau} = 66.\overline{6} \text{ N}$ O.E.D. Notice that the tension $(66.\overline{6} \text{ N})$ must be greater than the weight of the smaller block (50 N), and less than the weight of the larger block (100 N). (This should be


Use this space for summary and/or additional notes:

obvious from the free-body diagrams.)

Big Ideas	Details Unit: Forces in One Dimension					
	To find the tension, we can apply Newton's second law to the cart:					
	$F_{net, cart} = F_{T}$					
	$m_{cart}a = F_{\tau}$					
	(10)(2.86) = 28.6 N					
	Again, we can get the same result by applying Newton's second law to the hanging mass:					
	$F_{net,hang} = F_g - F_T$					
	$m_{hang}a = F_g - F_{\tau}$					
	$(4)(2.86) = (4)(10) - F_{\tau}$					
	$11.4 = 40 - F_{\tau}$					
	$F_{\tau} = 40 - 11.4 = 28.6 \mathrm{N}$					
	Notice that the tension (28.6 N) must be less than the weight of the hanging block (40 N). (Again, this should be obvious from the free-body diagram for the hanging block.)					
	Alternative Approach					
	In most physics textbooks, the solution to Atwood's machine problems is presented as a system of equations. The strategy is:					
	 Draw a free-body diagram for each block. 					
	• Apply Newton's 2 nd Law to each block separately, giving $F_{net} = m_1 a$ for block 1 and $F_{net} = F_g - F_T = m_2 a$, which becomes $F_{net} = m_2 g - F_T = m_2 a$ for block 2.					
	• Set the two F_{net} equations equal to each other, eliminate one of F_T or a , and solve for the other.					
	This is really just a different presentation of the same approach, but most students find it less intuitive.					
	Use this space for summary and/or additional notes:					

Page: 308



Page: 310 Unit: Forces in One Dimension

		rension	1 age: 510
Big Ideas	Details		Unit: Forces in One Dimension
honors & AP®	2.	(M – AP [®] & honors; A – CP1) A block	
nonors & AP°		with a mass of m_1 sitting on a	
		frictionless horizontal table is	m ₁
		-	
		connected to a hanging block of	
		mass m_2 by a string that passes over	
		a pulley, as shown in the figure	
		below.	
		Assuming that friction, the mass of	m ₂
		the string, and the mass of the pulley	
		are negligible, derive expressions for	
		the rate at which the blocks	•
		accelerate and the tension in the	
		rope.	
		(If you are not sure how to solve this prob	lem do #2 below and use the store
			iem, do #5 below and use the steps
		to guide your algebra.)	
		Answer: $a = \frac{m_2 g}{1 + m_2 g}$: $F_{-} = \frac{m_1 m_2 g}{1 + m_2 g}$	
		Answer: $a = \frac{m_2 g}{m_1 + m_2}$; $F_T = \frac{m_1 m_2 g}{m_1 + m_2}$	
I	•		

Use this space for summary and/or additional notes:

Page: 311 Unit: Forces in One Dimension

Use this space for summary and/or additional notes:

-	•
	ncion
	nsion
	101011

Big Ideas	Details		Unit: Forces in (One Dimension
honors & AP®	3.0 kg sit horizont connecte block of string th pulley, a figure be friction b upper bl is 10 N. At what	ack with a mass of ting on a al table is ed to a hanging mass 5.0 kg by a at passes over a s shown in the clow. The force of between the ock and the table rate do the blocks a $a = 5 \frac{m}{s^2}$; $F_T = 25 \text{ N}$	3.0 kg	the rope?
II				