		Friction	Page: 313	
Big Ideas	Details		Unit: Forces in One Dimension	
		Friction		
	Unit: Forces	in One Dimension		
	NGSS Standa	ards/MA Curriculum Frameworks (20	016): HS-PS2-1, HS-PS2-10(MA)	
	AP [®] Physics 2.7.A.1 2.7.B.2	1 Learning Objectives/Essential Kno L.i, 2.7.A.1.ii, 2.7.A.2, 2.7.A.2.i, 2.7.A. 2.ii, 2.7.B.3	wledge (2024): 2.7.A, 2.7.A.1, 2.ii, 2.7.B, 2.7.B.1, 2.7.B.2, 2.7.B.2.i,	
	Mastery Objective(s): (Students will be able to)			
	 Calculate the frictional force on an object. 			
	 Calculate the net force in problems that involve friction. 			
	Success Crite	eria:		
	• Free-b	ody diagram is correct.		
	 Frictio of frict 	• Frictional force is correctly identified as static or kinetic and correct coëfficient of friction is chosen.		
	 Vector 	quantities (force & acceleration) are	e correct, including sign (direction).	
	 Algebr 	 Algebra is correct and correct units are included. 		
	Language Ob	ojectives:		
	 Explain how to identify the type of friction (static or kinetic) and how to choose the correct coëfficient of friction. 			
	Tier 2 Vocab	ulary: friction, static, kinetic, force		
	Labs, Activ	vities & Demonstrations:		
	 Drag a heavy object attached to a spring scale. 			
	 Friction board (independent of surface area of contact). 			
	Notes:			
	Most people to turn beca	understand the concept of friction. use there's too much friction," peopl	If you say, "The wheel is too hard le will know what you mean.	
	friction: a co	ntact force that resists sliding of surf	aces against each other.	
	Friction i the mate	is caused by the roughness of the ma erials, and/or molecular attraction be	aterials in contact, deformations of etween the materials.	
			Rough surfaces	
	If you sli arrows, t object so	de (or try to slide) either or both of t the applied force would need to be e o that the rough parts of the surfaces	he objects in the direction of the mough to occasionally lift the upper s have enough room to pass.	
	Use this space	ce for summary and/or additional no	tes:	

Frictional forces are parallel to the plane of contact between two surfaces, and opposite to the direction of motion or applied force.

There are two types of friction:

<u>static friction</u>: friction between surfaces that <u>are not</u> moving relative to each other. Static friction resists the surfaces' ability to <u>start</u> sliding against each other.

<u>kinetic friction</u>: friction between surfaces that <u>are</u> moving relative to each other. Kinetic friction resists the surfaces' ability to <u>keep</u> sliding against each other.

Consider the situations below. Suppose that it takes 10 N of force to overcome static friction and get the box moving. Suppose that once the box is moving, it takes 9 N of force to keep it moving.

Static Friction

Details

Big Ideas

When the person applies 5 N of force, it creates 5 N of friction, which is less than the maximum amount of static friction. The forces cancel, so there is **no net force,** and the box **remains at rest**.

$$\vec{F}_{net} = 0 \rightarrow \vec{a} = 0$$

When the person applies 10 N of force, it creates 10 N of friction. That is the *maximum amount of static friction*, *i.e.*, exactly the amount of force that it takes to get the box moving. The friction immediately changes to kinetic friction (which is less than static friction). There is now a *net force*, so the box *accelerates*.

Kinetic Friction

Once the box is moving, the *kinetic friction remains constant regardless of the force applied*. Notice that the amount of kinetic friction (9 N) is less than the maximum amount of static friction (10 N). This is almost always the case; it takes more force to start an object moving than to keep it moving.

		Friction	Page: 316	
Big Ideas	Details		Unit: Forces in One Dimension	
	Because static friction of friction are differen	and kinetic friction are differe t.	nt situations, their coëfficients	
	coëfficient of static friction (μ_s): the coëfficient of friction between two surfaces when the surfaces are <u>not moving</u> relative to each other.			
	<u>coëfficient of kinetic friction</u> (μ_k): the coëfficient of friction between two surfaces when the surfaces are <u>sliding</u> against each other.			
	The force of friction on an object is given by rearranging the equation for the coëfficient of friction:			
	$F_f \leq \mu_s F_N$	for an object that is stationar	У	
	$F_f = \mu_k F_N$	for an object that is moving		
	Where F_f is the magnitude static and kinetic friction	itude of the force of friction, μ_{N} on, respectively, and F_{N} is the	s and μ_k are the coëfficients of magnitude of the normal force.	
	Note that the equation for the force of static friction is an inequality. As described above, when an object is at rest the force that resists sliding is, of course, equal to the force applied.			
	(Think about it—suppose you calculated the force of static friction for an object surface to be 50 N, and a person applied 20 N of force to the object. If there we actually 50 N of friction, there would be a net force of 30 N and the object woul accelerate backwards!)			
Friction as a Vector Quant			uantity	
	Like other forces, the f	orce of friction is, of course, a	ctually a vector. Its direction is:	
	 parallel to the in direction of mot 	terface between the two surfa ion (kinetic friction)	ices and opposite to the	
	 opposite to the opposite to the opposite to the surright of the s	component of the applied forc faces (static friction)	e that is parallel to the interface	
	Whether the force of f depends on the above always, whenever mul diagram.	riction is represented by a pos and on which direction you ha tiple forces are involved it is he	itive or negative number ave chosen to be positive. As elpful to draw a free-body	
	Use this space for sum	mary and/or additional notes:		

	Friction Page: 317
Big Ideas	Details Unit: Forces in One Dimension
	Solving Simple Friction Problems
	Because friction is a contact force, all friction problems involve friction in addition to some other (usually externally applied) force.
	To calculate the force from friction, you need to:
	1. Calculate the force of gravity. On Earth, $F_g = mg = m(10)$
	2. Calculate the normal force. If the object is resting on a horizontal surface (which is usually the case), the normal force is usually equal in magnitude to the force of gravity. This means that for an object sliding across a horizontal surface: $3 \mu_{s} \text{ or } \mu_{k}? F_{N}$
	$F_N = F_g$
	 Figure out whether the friction is static (there is an applied force, but the object is not moving), or kinetic (the object is moving). Look up the appropriate coëfficient of friction (μ_s for static friction, or for kinetic friction).
	4. Calculate the force of friction from the equation:
	$F_f \leq \mu_s F_N$ or $F_f = \mu_k F_N$
	Make the force of friction positive or negative, as appropriate. (This will depend on which direction you have chosen to be positive; refer to the free-body diagram.)
	5. If the problem is asking for net force, remember to go back and calculate it now that you have calculated the force of friction.
	If friction is the only uncancelled force, and it is causing the object to slow down and eventually stop, then:
	$F_{net} = F_f$
	However, if there is an applied force and friction is opposing it, then the net force would be:
	$F_{net} = \sum F = F_{applied} + F_{f}$
	(Note, however, that in the above situation, $F_{applied}$ and F_f are in opposite directions, so they need to have opposite signs. In most cases, this will make F_f negative.)

		Friction	Page: 319	
Big Ideas	Details		Unit: Forces in One Dimension	
	Homework Problems			
	For these problems, you will need to look up coëfficients of friction in <i>Table E. Approximate Coëfficients of Friction</i> on page 572 of your Physics Reference Tables).			
	1. (M) A student wants to slide a <u>steel</u> 15 kg mass across a <u>steel</u> table.			
	a.	(M) How much force must the student moving?	apply in order to start the box	
		Answer: 111 N		
	b.	(M) Once the mass is moving, how mut to keep it moving at a constant velocity	ch force must the student apply ?	
		Answer: 85.5 N		
	2. (S)	A wooden desk has a mass of 74 kg.		
	a.	(S) How much force must be applied to across a wooden floor?	o the desk to start it moving	
		Answer: 310.8 N		
	b.	(S) Once the desk is in motion, how mumoving at a constant velocity?	uch force must be used to keep it	
		Answer: 222 N		

		Friction Page: 32	0
Big Ideas	Details	Unit: Forces in One Dimensio	n
	3.	A large sport utility vehicle has a mass of 1850 kg and is traveling at $15 \frac{m}{s}$ (a	<u> </u>
		little over 30 MPH). The driver slams on the brakes, causing the vehicle to skid.	
		a. (M) How far would the SUV travel before it stops on dry asphalt?	
		(Hint: this is a combination of a motion problem and a Newton's Second Law problem with friction.)	1
		Answer: 16.8 m	
		 b. (S) How far would the SUV travel if it were skilding to a stop on ice? (This is the same problem as part (a), but with a different coëfficient of friction.) 	
		Answer: 75 m	

		Friction	Page: 321
Big Ideas	Details	Unit: Forces i	n One Dimension
honors & AP®	4.	$(M - AP^{\circ} \& honors; A - CP1)$ A curling stone with a mass o distance <i>d</i> across a sheet of ice in time <i>t</i> before it stops becaution what is the coefficient of kinetic friction between the ice ar	f <i>m</i> slides a ause of friction. nd the stone?
		(If you are not sure how to solve this problem, do #5 below to guide your algebra.) Answer: $\mu_k = \frac{2d}{at^2}$	and use the steps
	5.	(S – AP® & honors; M – CP1) A curling stone with a mass of 38 m across a sheet of ice in 8.0 s before it stops because of the coëfficient of kinetic friction between the ice and the st (You must start with the equations in your Physics Reference show all of the steps of GUESS. You may only use the answe above as a starting point if you have already solved that pro	f 18 kg slides friction. What is one? <u>e Tables and</u> er to question #4 oblem.)
		Answer: 0.12	