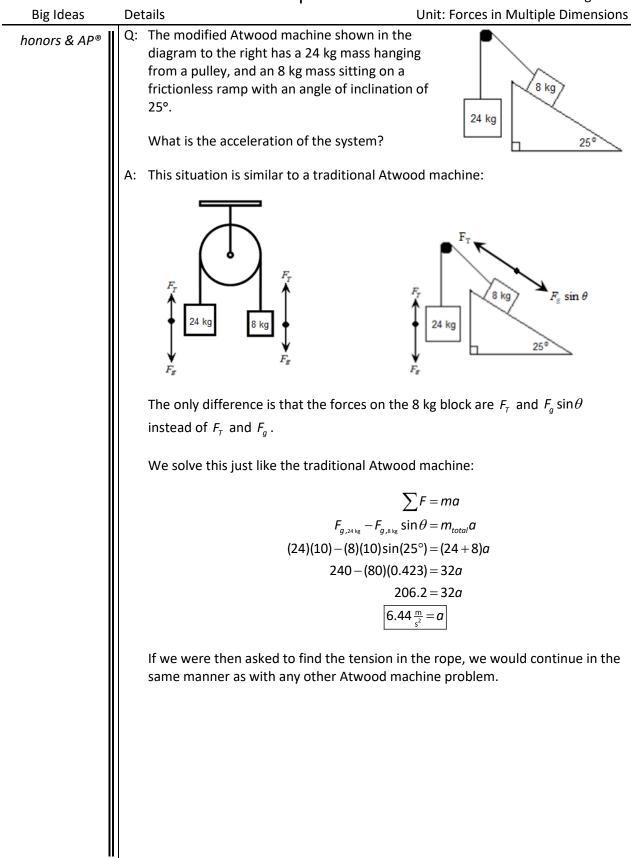

Big Ideas	Details Unit: Forces in Multiple Dimensions			
honors & AP [®]	Ramp Problems			
	•			
	Unit: Forces in Multiple Dimensions			
	NGSS Standards/MA Curriculum Frameworks (2016): N/A AP Physics 1 Learning Objectives/Essential Knowledge (2024): 1.C.1.1, 2.B.1.1,			
	3.A.2.1, 3.B.1.1, 3.B.1.2, 3.B.1.3, 3.B.2.1, 4.A.2.3, 4.A.3.1, 4.A.3.2			
	Mastery Objective(s): (Students will be able to)			
	Calculate forces on an object on a ramp.			
	Success Criteria:			
	 Forces are split or combined correctly using the Pythagorean Theorem and trigonometry. 			
	 Algebra is correct and rounding to appropriate number of significant figures is reasonable. 			
	Language Objectives:			
	 Explain how the forces on an object on a ramp depend on the angle of inclination of the ramp. 			
	Tier 2 Vocabulary: force, ramp, inclined, normal			
	Labs, Activities & Demonstrations:			
	 Objects sliding down a ramp at different angles. 			
	 Set up ramp with cart & pulley and measure forces at different angles. 			
	Notes:			
	The direction of the normal force does not always directly oppose gravity. For example, if a block is resting on a (frictionless) ramp, the weight of the block is \vec{F}_{g} , in the direction of gravity. However, the normal force is perpendicular to the ramp, not to gravity.			
l				



Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

Use this space for summary and/or additional notes:

		Ramp Problems	Page: 351
Big Ideas	Details	-	n Multiple Dimensions
honors & AP®		Homework Problem	
	1.	(M – honors & AP [®] ; A – CP1) A 10. kg block sits on a fr an angle of inclination of 30°. What is the rate of accel	-
		Answer: 5.0 $\frac{m}{s^2}$	
	2.	 (S – AP®; A – honors & CP1) A skier is skiing down a ske fairly slow velocity (meaning that air resistance is negli angle of inclination of the slope? <i>Hints:</i> You will need to look up the coëfficient of kinetic frid on snow in Table E. Approximate Coëfficients of Frid your Physics Reference Tables. You do not need to know the mass of the skier becate equation. If the velocity is constant, that means there is no neit the force down the slope (ramp) is equal to the opport 	gible). What is the stion for a <u>waxed ski</u> stion on page 572 of use it drops out of the t force, which means
		Answer: 2.9°	

Page: 352 Unit: Forces in Multiple Dimensions

		Ramp Floblems Page: 352
Big Ideas	Details	Unit: Forces in Multiple Dimensions
honors & AP®	3.	(M – honors & AP [®] ; A – CP1) A mass of 30. kg is suspended from a massless rope on one side of a massless, frictionless pulley. A mass of 10. kg is connected to the rope on the other side of the pulley and is sitting on a ramp with an angle of inclination of 30°. The system is shown in the diagram to the right.
		a. Assuming the ramp is frictionless, determine the acceleration of the system. Answer: $a = 6.25 \frac{m}{s^2}$
		b. (M – honors & AP [®] ; A – CP1) Assuming instead that the ramp has a coëfficient of kinetic friction of $\mu_k = 0.3$, determine the acceleration of the system once the blocks start to move.
		Answer: $a = 5.60 \frac{m}{s^2}$

Use this space for summary and/or additional notes:

Big Ideas	Details	Unit: Forces in Multiple Dimensions
Big Ideas		 (S - honors & AP*; A - CP1) Two boxes with masses 17 kg and 15 kg are connected by a light string that passes over a frictionless pulley of negligible mass as shown in the figure below. The surfaces of the planes are frictionless. a. (S - honors & AP*; A - CP1) When the blocks are released, which direction will the blocks move? b. (S - honors & AP*; A - CP1) Determine the acceleration of the system.
		Answer: $0.303 \frac{m}{s^2}$