		Sp	orings	Page: 506	
Big Ideas	Details		_	Unit: Simple Harmonic Motion	
	Springs				
	Unit: Simple Harmonic Motion				
	NGSS Standards/MA Curriculum Frameworks (2016): N/A				
	AP [®] Physics 1 Learning Objectives/Essential Knowledge (2024): 7.2.A, 7.2.A.1, 7.2.A.1.i				
	Mastery Objective(s): (Students will be able to)				
	 Calculate the period of oscillation of a spring. 				
	 Calculate the force from and potential energy stored in a spring. 				
	Success Criteria:				
	 Variables are correctly identified and substituted correctly into the correct part of the correct equation. 				
	-	ra is correct and rou nable.	nding to appropria	te number of significant figures is	
	Language O	bjectives:			
	• Explai	in what a spring cons	stant measures.		
	Tier 2 Voca	bulary: spring			
	Labs, Acti	vities & Demonst	rations:		
	 Spring mounted to lab stands with paper taped somewhere an indicator. 				
	Notes:				
	spring: a coiled object that resists motion parallel with the direction of propag of the coil.				
			Spring Force	2	
	-	on for the force (vector) ohysicist Robert Hool		s given by Hooke's Law, named for	
			$\vec{F}_{s} = -k\vec{x}$		
	Where \vec{F}_s is the spring force (vector quantity representing the force exerted by the spring), \vec{x} is the displacement of the end of the spring (also a vector quantity), and k is the spring constant, an intrinsic property of the spring based on its mass, thickness, and the elasticity of the material that it is made of.				
	-	e sign in the equatio lirection from the dis		rce is always in the opposite	

Big Ideas	Spri Details	ngs	Page: 507 Unit: Simple Harmonic Motion			
big ideas		.5 [™] , while a heavy				
	A Slinky has a spring constant of $0.5 \frac{N}{m}$, while a heavy garage door spring might have a spring constant of $500 \frac{N}{m}$.					
	000000 F		F 0000000			
		ompressed spring = −k∆X	stretched spring F = −k∆X			
	Pot	Potential Energy				
	The potential energy stored in a sp	The potential energy stored in a spring is given by the equation:				
	$U = \frac{1}{2}kx^2$					
	Where U is the potential energy (measured in joules), k is the spring constant, is the displacement. Note that the potential energy is always positive (or zero) is because energy is a scalar quantity. A stretched spring and a compressed sp both have potential energy.					
	The total mechanical energy in a spring-object system is given by the equation: $E_{total} = \frac{1}{2}kA^2$ where A is the amplitude (maximum displacement). This makes sense, because when $x = A$, all of the energy is potential, and the equation becomes the same as above.					
	Period					
	displacement in one direction t	riod of oscillation: the time it takes a spring to move from its maximum ment in one direction to its maximum displacement in the opposite and back again. The variable for the period is <i>T</i> , and the unit is usually				
	The period of a spring-object system depends on the mass of the object and the spring constant of the spring, and is given by the equation:					
	$T_s = 2\pi \sqrt{\frac{m}{k}}$					

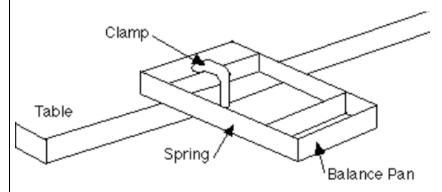
Frequency

<u>frequency</u>: the number of times something occurs in a given amount of time. Frequency is usually given by the variable f, and is measured in units of hertz (Hz). One hertz is the inverse of one second:

$$1 \text{Hz} \equiv \frac{1}{1 \text{ s}} \equiv 1 \text{ s}^{-1}$$

Note that the period and frequency are reciprocals of each other:

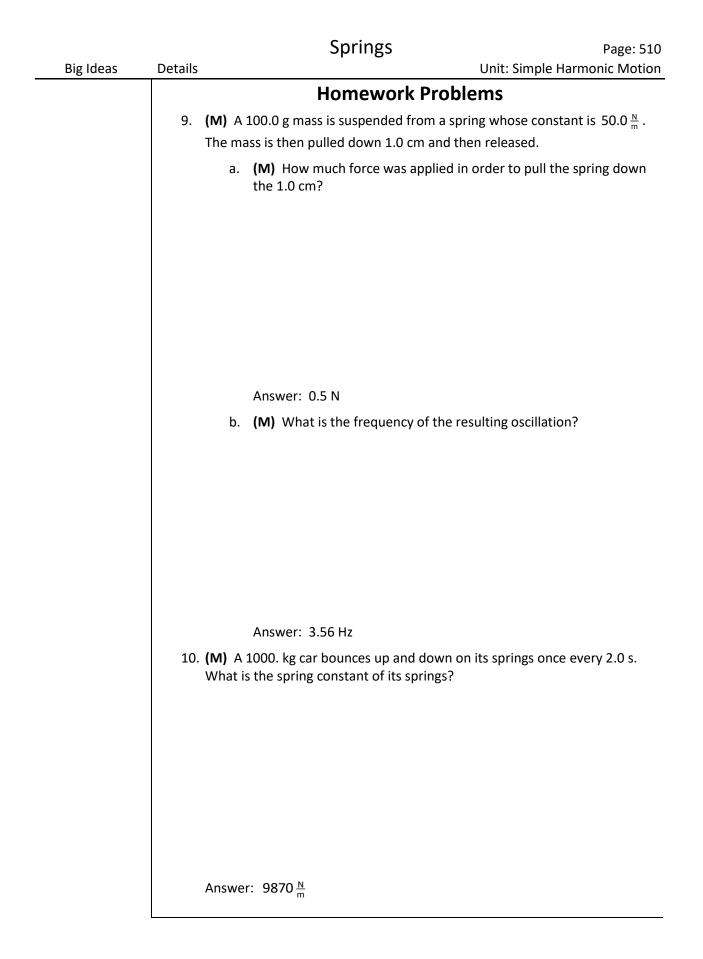
$$T = \frac{1}{f}$$
 and $f = \frac{1}{T}$


Measuring Inertial Mass

As described in *Newton's Laws of Motion*, starting on page 260, inertia is the property of an object that resists forces that attempt to change its motion. An object's translational inertia is the same as its mass:

<u>gravitational mass</u>: the property of an object that is attracted by a gravitational field. Measured in kg.

<u>inertial mass</u>: the ability of an object to resist changes to its motion. Also measured in kg, and equal to the object's gravitational mass.


Inertial mass is measured using an inertial balance, which is just an apparatus that consists of a pair of springs and a pan to hold the object whose mass is being measured:

The balance pan is pulled to one side, causing it to oscillate. The balance is calibrated with objects of known mass, and the period of oscillation is then used to determine the mass of the unknown object.

Inertial mass is useful because it does not depend on the gravitational force, and can be measured in space.

		Shings	Page: 509			
Big Ideas	De	tails	Unit: Simple Harmonic Motion			
	Sample Problem:					
	Q:	A spring with a mass of 0.1 kg and a spri	ng constant of $2.7 \frac{N}{m}$ is compressed			
		0.3 m. Find the force needed to compress stored in the spring when it is compress				
	A:	The force is given by Hooke's Law.				
		Substituting these values gives:				
		$\vec{F} = -k\vec{x}$				
		$\vec{F} = -(2.7 \frac{N}{m})(+$	0.3m)=-0.81N			
		The potential energy is:				
		$U_s = \frac{1}{2}kx^2$				
		$U_s = (0.5)(2.7 \frac{N}{m})$	$(0.3 \mathrm{m})^2 = 0.12 \mathrm{J}$			
		The period is:				
		$T_s = 2\pi \sqrt{\frac{m}{k}}$				
		$T_s = (2)(3.14)\sqrt{\frac{0.1}{2.7}}$				
		,				
		$I_s = 6.28\sqrt{0.037} =$	e (6.28)(0.19) = 1.2 s			
	1					

