


g Ideas	Details	Unit: Fluids & Pressure			
AP®	Buoyancy				
	 Unit: Fluids & Pressure NGSS Standards/MA Curriculum Frameworks (2016): HS-PS2-10(MA), HS-PS2-1 AP® Physics 1 Learning Objectives/Essential Knowledge (2024): 8.3.B, 8.3.B.1, 8.3.B.2, 8.3.B.3 Mastery Objective(s): (Students will be able to) Solve problems involving the buoyant force on an object. 				
	 Use a free-body diagram to represent the fluid. Success Criteria: 	forces on an object surrounded by a			
	• Problems are set up & solved correctly wit Language Objectives:	h the correct units.			
	• Explain why a fluid exerts an upward force Tier 2 Vocabulary: float, displace	on an object surrounded by it.			
	 Labs, Activities & Demonstrations: Upside-down beaker with tissue Ping-pong ball or balloon under water beaker floating in water right-side-up with weights upside-down with trapped air Spring scale with mass in & out of water or Cartesian diver Aluminum foil & weights Cardboard & duct tape canoes Notes: 	n a balance			
	<u>displace</u> : to push out of the way				

	Dubyancy	rage. JJ4		
Big Ideas	Details	Unit: Fluids & Pressure		
AP®	Maximum Buoyant Force			
	The maximum buoyant force on an object is conceptually similar to the maximum force of static friction.			
	Friction	Buoyancy		
	Static friction is a reaction force that is equal to the force that caused it.	Buoyancy is a reaction force that is equal to the force that caused it (the weight of the object).		
	When static friction reaches its maximum value, the object starts moving.	When the buoyant force reaches its maximum value (<i>i.e.,</i> when the volume of water displaced equals the volume of the object), the object sinks.		
	When the object is moving, there is still friction, but the force is not strong enough to stop the object from moving.	When an object sinks, there is still buoyancy, but the force is not strong enough to cause the object to float.		
	Detailed Explanation If the object floats, there is no net force, which means the weight of the object is equal to the buoyant force. This means:			
	$F_g = F_B$ $mg = \rho V_d S$	9		
	Cancelling <i>g</i> from both sides gives <i>m</i> = to give the equation for density:	$= ho V_d$, which can be rearranged		
	$\rho = \frac{m}{V_d}$	<u>-</u>		
	Therefore, if the object floats:	*		
	 The mass of the object equals the mass of the fluid displaced. 			
	 The volume of the fluid displaced that is submerged. 	l equals the volume of the object		
		ng any air inside of it that is below the y of the fluid. (This is why a ship made of		

	bubyancy	Page: 5:		
Big Ideas	Details	Unit: Fluids & Pressu		
AP®	Sample Problems:			
	Q: A cruise ship displaces 35 000 tonnes of water when it			
	(1 tonne = 1000 kg) If sea water has a density of 102	$5\frac{kg}{m^3}$, what volume of		
	water does the ship displace? What is the buoyant fo	rce on the ship?		
	~			
	A: $\rho = \frac{m}{V_d}$			
	$1025 = \frac{(35000)(1000)}{V_d}$			
	$V_d = 34146\mathrm{m}^3$			
	$F_{B} = \rho V_{d} = (1025)(34146)(10) = 3.5 \times 10^{8} \text{ N}$			
	·			

Big Ideas Details A: In order to lift Pasquale, $F_{\rm B} = F_{\rm g}$. AP® $F_g = mg = (16)(10) = 160 \text{ N}$ $F_{B} = \rho_{air} V_{d} g = (1.2) V_{d}$ (10) Because $F_{\rm B} = F_{\rm g}$, this means: $160 = 12 V_d$ $V_{d} = 13.\overline{3} \text{ m}^{3}$ Assuming spherical balloons, the volume of one balloon is: $V = \frac{4}{3}\pi r^3 = (\frac{4}{3})(3.14)(0.14)^3 = 0.0115 \,\mathrm{m}^3$ Therefore, we need $\frac{13.\overline{3}}{0.0115}$ = 1160 balloons to lift Pasquale. However, the problem with this answer is that it doesn't account for the mass of the helium, the balloons and the strings. Each balloon contains $0.0115 \text{ m}^3 \times 0.166 \frac{\text{kg}}{\text{m}^3} = 0.00191 \text{ kg}$ of helium. Each empty balloon (including the string) has a mass of 2.37 g = 0.00237 kg. The total mass of each balloon full of helium is 1.91 g + 2.37 g = 4.28 g = 0.00428 kg.This means if we have *n* balloons, the total mass of Pasquale plus the balloons is 16 + 0.00428*n* kilograms. The total weight (in newtons) of Pasquale plus the balloons is therefore this number times 10, which equals 160 + 0.0428n. The buoyant force of one balloon is: $F_{B} = \rho_{air}V_{d}g = (1.2)(0.0115)(10) = 0.138 \text{ N}$ Therefore, the buoyant force of *n* balloons is 0.138*n* newtons. For Pasquale to be able to float, $F_{B} = F_{g}$, which means 0.138n = 0.0428n + 1600.0952*n* = 160 n = 1680 balloons

		Buoyancy	Page: 539	
Big Ideas	Details		Unit: Fluids & Pressure	
AP®		Homework Problems		
	1.	(M) A block is 0.12 m wide, 0.07 m long and 0.09 m $$	n tall and has a mass of	
		0.50 kg. The block is floating in water with a densit	ty of $1000 \frac{\text{kg}}{\text{m}^3}$.	
		a. What volume of the block is below the sur	a. What volume of the block is below the surface of the water?	
		Answer: $5 \times 10^{-4} \text{ m}^3$		
		b. If the entire block were pushed under wate would it displace?	er, what volume of water	
		Answer: $7.56 \times 10^{-4} \text{ m}^{3}$		
		c. How much additional mass could be piled of it sinks?	on top of the block before	
		Answer: 0.256 kg		
	2.	(S) The SS United Victory was a cargo ship launche		
		mass of 15 200 tonnes fully loaded. (1 tonne = 1 00 water is $1025 \frac{\text{kg}}{\text{m}^3}$. What volume of sea water did to		
			the SS Onited victory	
		displace when fully loaded?		
		Answer: 14 829 m ³		
	l			

Buoyancy

		bubyancy	Page: 540
Big Ideas	Details		Unit: Fluids & Pressure
AP®	3.	(S) An empty box is 0.11 m per side. It will slowly be filled with sand that has	
		a density of $3500 \frac{\text{kg}}{\text{m}^3}$. What volume of sand will ca	use the box to sink in
		water? Assume water has a density of $1000 \frac{\text{kg}}{\text{m}^3}$.	Assume the box is
		neutrally buoyant, which means you may neglect t	he weight of the box.
		Strategy:	
		a. Find the volume of the box.	
		b. Find the mass of the water displaced.	
		c. Find the volume of that same mass of sand	
		Answer: $3.80 \times 10^{-4} \text{ m}^{3}$	
		AIBWEL 3.00 ATO III	