Appendix: AP® Physics 1 Equation Tables

ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION (2024)

CONSTANTS AND CONVERSION FACTORS

Universal gravitational constant,

 $G = 6.67 \times 10^{-11} \,\mathrm{m}^3 / (\mathrm{kg \cdot s}^2) = 6.67 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2 / \mathrm{kg}^2$

1 atmosphere of pressure,

 $1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2 = 1.0 \times 10^5 \text{ Pa}$

Acceleration due to gravity at Earth's surface,

 $g = 9.8 \text{ m/s}^2$

Magnitude of the gravitational field strength at the

Earth's surface, g = 9.8 N/kg

F	PREFIXE	ES
Factor	Prefix	Symbol
10^{12}	tera	T
10 ⁹	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

	hertz,	Hz	newton,	N
UNIT	joule,	J	pascal,	Pa
SYMBOLS	kilogram,	kg	second,	S
	meter,	m	watt,	W

VALU	JES OF T	TRIGONO	OMETRI ANG		ΓΙΟΝS F	OR COM	MON
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- Air resistance is assumed to be negligible unless otherwise stated.
- Springs and strings are assumed to be ideal unless otherwise stated.
- Fluids are assumed to be ideal, and pipes are assumed to be completely filled by fluid, unless otherwise stated.

	G	EOMETRY AND TRIGON	NOMETRY	
Rectangle $A = bh$	Rectangular Solid $V = \ell wh$		A = area b = base	Right Triangle $a^2 + b^2 = c^2$
Triangle $A = \frac{1}{2}bh$	Cylinder $V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$	s P	C = circumference h = height $\ell = \text{length}$ r = radius s = arc length S = surface area	$\sin \theta = \frac{a}{c}$ $\cos \theta = \frac{b}{c}$ $\tan \theta = \frac{a}{b}$
Circle $A = \pi r^{2}$ $C = 2\pi r$ $s = r\theta$	Sphere $V = \frac{4}{3}\pi r^3$ $S = 4\pi r^2$	`	V = volume w = width $\theta = \text{angle}$	c 90° a

MECHANICS AND FLUIDS

|--|

$$x = x_0 + v_{xo}t + \frac{1}{2}a_x t^2$$

$$v_x^2 = v_{xo}^2 + 2a_x(x - x_o)$$

$$\vec{x}_{cm} = \frac{\sum m_i \vec{x}_i}{\sum m_i}$$

$$\vec{a}_{sys} = \frac{\Sigma \vec{F}}{m_{sys}}$$

$$\left| \vec{F}_f \right| \leq \left| \mu \vec{F}_n \right|$$

$$a_c = \frac{v^2}{r}$$

 $K = \frac{1}{2}mv^2$

$$W = F_{\parallel}d = Fd\cos\theta$$

a = acceleration

d = distance

E = energy

F =force

J = impulse

k = spring constant

K = kinetic energy

m = mass

p = momentum

P = power

r = radius, distance, or position

t = time

U = potential energy

v = velocity or speed

W = work

x = position

y = height θ = angle

 μ = coefficient of friction

$$\Delta K = \sum W_i = \sum F_{\parallel,i} d_i$$

$$U_G = -\frac{Gm_1m_2}{r}$$

$$\Delta U_g = mg\Delta y$$

$$P_{avg} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$$

$$P_{inst} = F_{\parallel} v = F v \cos \theta$$

$$\vec{p} = m\vec{v}$$

$$\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$$

$$\vec{J} = \vec{F}_{avg} \Delta t = \Delta \vec{p}$$

$$\vec{v}_{cm} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$$

 $\omega = \omega_0 + at$

$$\theta = \theta_o + \omega_o t + \frac{1}{2}\alpha t^2$$

 $\omega^2 = \omega_o^2 + 2\alpha(\theta - \theta_o)$

$$v = r\omega$$

 $a_T = r\alpha$

$$\tau = r_{\perp}F = rF\sin\theta$$

 $I = \sum_{i} m_i r_i^2$

$$I' = I_{cm} + Md^2$$

$$\alpha_{sys} = \frac{\sum \tau}{I_{cus}} = \frac{\tau_{net}}{I_{cus}}$$

 $K = \frac{1}{2}I\omega^2$

$$W = \tau \Delta \theta$$

 $L = I\omega = rmv\sin\theta$

 $\Delta L = \tau \Delta t$

$$\vec{p} = m\vec{v}$$

$$\vec{F}_{net} = \frac{\Delta \vec{p}}{\Delta t} = m \frac{\Delta \vec{v}}{\Delta t} = m \vec{a}$$

$$\vec{v}_{cm} = \frac{\sum \vec{p}_i}{\sum m_i} = \frac{\sum m_i \vec{v}_i}{\sum m_i}$$

$$w_o + at$$
 $a = acceleration$
 $A = amplitude or area$

$$=\theta_{o}+\omega_{o}t+\frac{1}{2}\alpha t^{2}$$

d = distancef = frequency

F =force h = height

I = rotational inertia

k =spring constant

K = kinetic energy

 $\ell = length$

L =angular momentum

m = mass

M = mass

P = pressure

r = radius, distance, or

position

t = time

T = period

v = velocity or speed

V = volume

W = work

x = positiony = vertical position

 α = angular acceleration

 θ = angle

 ρ = density

 τ = torque

 ω = angular speed

 $x = A\sin(2\pi ft)$

 $P_1 + \rho g y_1 + \frac{1}{2} \rho v_1^2 = P_2 + \rho g y_2 + \frac{1}{2} \rho v_2^2$