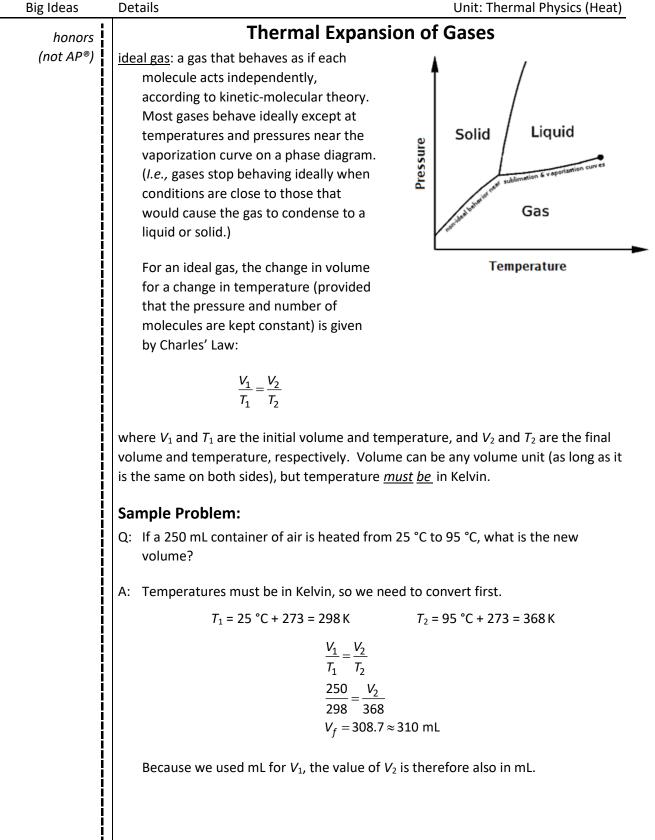

Big Ideas	Details Unit: Thermal Physics (Heat)				
honors	Thermal Expansion				
(not AP®)	Unit: Thermal Physics (Heat)				
i	NGSS Standards/MA Curriculum Frameworks (2016): N/A				
ļ	AP [®] Physics 2 Learning Objectives/Essential Knowledge (2024): N/A				
	Mastery Objective(s): (Students will be able to)				
	 Calculate changes in length & volume for solids, liquids and gases that are undergoing thermal expansion or contraction. 				
1	Success Criteria:				
	 Variables are correctly identified and substituted correctly into the correct equations. 				
	• Algebra is correct and rounding to appropriate number of significant figures is reasonable.				
ł	Language Objectives:				
i	• Explain what the heat is used for in each step of a heating curve.				
ļ	Tier 2 Vocabulary: expand, contract				
Ĩ	Labs, Activities & Demonstrations:				
1	 Balloon with string & heat gun. 				
İ	• Brass ball & ring.				
	• Bi-metal strip.				
	Notes:				
	expand: to become larger				
	<u>contract</u> : to become smaller				
	thermal expansion: an increase in the length and/or volume of an object caused by a change in temperature.				
	When a substance is heated, the particles it is made of move farther and faster. This causes the particles to move farther apart, which causes the substance to expand.				
	Solids tend to keep their shape when they expand. (Liquids and gases do not have a definite shape to begin with.)				
	A few materials are known to contract with increasing temperature over specific temperature ranges. One well-known example is liquid water, which contracts as it heats from 0 °C to 4 °C. (Water expands as the temperature increases above 4 °C.)				
į					

);~ Idaaa								
g Ideas	Details				Unit: Therma	al Physics (Hea		
honors	T	hermal E	xpansion	of Solids	and Liqui	ds		
(not AP®)	Thermal expansion is quantified in solids and liquids by defining a coëfficient of							
İ	thermal expansion. The changes in length and volume are given by the equation							
	Length: $\Delta L = \alpha L_i \Delta T$							
	Volume: $\Delta V = \beta V_i \Delta T$							
	where:							
	-	e in length (r	n)					
İ	$L_i = \text{initial le}$	• • •	thormal ovna	nsion (°C ⁻¹ or l	v -1)			
ļ	u – intear c	Joennene of	пенна ехра		×)			
	ΔV = change in volume (m ³) V_i = initial volume (m ³)							
			nt of thermal	expansion (°C	⁻¹ or K ⁻¹)			
ļ	-			expansion (e	or k y			
			/00 1/)					
	$\Delta T = temperature$	erature chan	ge (°C or K)					
				and liquids:				
	ΔT = tempo Values of α and			and liquids:				
				and liquids: Substance	α(°C ⁻¹)	β(°C ⁻¹)		
	Values of α and	d eta at 20°C fo	or some solids		α(°C ⁻¹) 1.4×10 ⁻⁵	β(°C ⁻¹) 4.2×10 ⁻⁵		
	Values of α and Substance	d β at 20°C fo α (°C ⁻¹)	for some solids β (°C ⁻¹)	Substance				
	Values of <i>α</i> and Substance aluminum	d β at 20°C for α (°C ⁻¹) 2.3×10 ⁻⁵	for some solids β (°C ⁻¹) 6.9×10^{-5}	Substance gold	1.4×10 ⁻⁵	4.2×10^{-5}		
	Values of <i>α</i> and Substance aluminum copper	d β at 20°C for α (°C ⁻¹) 2.3×10 ⁻⁵ 1.7×10 ⁻⁵	or some solids β (°C ⁻¹) 6.9×10^{-5} 5.1×10^{-5}	Substance gold iron	1.4×10 ⁻⁵ 1.18×10 ⁻⁵	4.2×10 ⁻⁵ 3.33×10 ⁻⁵		
	Values of <i>α</i> and Substance aluminum copper brass	d β at 20°C for α (°C ⁻¹) 2.3×10 ⁻⁵ 1.7×10 ⁻⁵ 1.9×10 ⁻⁵	or some solids β (°C ⁻¹) 6.9×10^{-5} 5.1×10^{-5} 5.6×10^{-5}	Substance gold iron lead	1.4×10^{-5} 1.18×10^{-5} 2.9×10^{-5}	4.2×10^{-5} 3.33×10^{-5} 8.7×10^{-5}		


Page: 77 Unit: Thermal Physics (Heat)

Big Ideas	Details Unit: Thermal Physics (Heat)
honors (not AP®)	Q: A typical mercury thermometer contains about 0.22 cm ³ (about 3.0 g) of mercury. Find the change in volume of the mercury in a thermometer when it is heated from 25 °C to 50. °C.
	A: For mercury, $\beta = 1.82 \times 10^{-4} \text{ °C}^{-1}$.
	$\Delta V = \beta V_i \Delta T$
	$\Delta V = (1.82 \times 10^{-4})(0.22)(25)$
	$\Delta V = 0.00091~\mathrm{cm}^3$
	If the distance from the 25 °C to the 50 °C mark is about 3.0 cm, we could use this information to figure out the bore (diameter of the column of mercury) of the thermometer:
	$V = \pi r^2 h$
	$0.00091 = (3.14)r^2(3.0)$
	$r^2 = \frac{0.00091}{(3.14)(3.0)} = 9.66 \times 10^{-5}$
	$r = \sqrt{9.66 \times 10^{-5}} = 0.0098 \text{ cm}$
	The bore is the diameter, which is twice the radius, so the bore of the thermometer is (2)(0.0098) = 0.0197 cm, which is about 0.20 mm.
: :	

Big Ideas	Details	Unit: Thermal Physics (Heat)				
honors		Homework Problems				
(not AP®)	You will need to look up coëfficients of thermal expansion in Table K. Thermal					
	Properties of Selected Materials on page 504 of your Physics Reference Tables.					
		S) A brass rod is 27.50 cm long at 25 °C. How long would the rod be if it vere heated to 750. °C in a flame?				
	A	Answer: 27.88 cm				
	2. (M) A steel bridge is 625 m long when the temperature is 0 °C.				
		 a. If the bridge did not have any expansion joints, how much longer would the bridge be on a hot summer day when the temperature is 35 °C? 				
		(Use the linear coëfficient of expansion for iron.)				
		Answer: 0.258 m b. Why do bridges need expansion joints?				
	t	M) A 15.00 cm long bimetal strip is aluminum on one side and copper on he other. If the two metals are the same length at 20.0 °C, how long will each be at 800. °C?				
	Δ	Answers: aluminum: 15.269 cm; copper: 15.199 cm				
	4. (S) A glass volumetric flask is filled with water exactly to the 250.00 mL line at 50. °C. What volume will the water occupy after it cools down to 20. °C?				
	A	Answer: 248.45 mL				

		Thermal Expansion	Page: 82		
Big Ideas	Details		Unit: Thermal Physics (Heat)		
honors		Homework Problems			
nonors (not AP®)	1.	(S) A sample of argon gas was cooled, and its 250. mL. If its final temperature was -45.0 °C, temperature?	volume went from 380. mL to		
	2.	Answer: 347 K or 74 °C (M) A balloon contains 250. mL of air at 50 °C cooled to 20.0 °C, what will be the new volum			
!					

Physics 2 In Plain English