Unit: Thermodynamics

Details

Big Ideas

NGSS Standards/MA Curriculum Frameworks (2016): HS-PS2-6

AP[®] Physics 2 Learning Objectives/Essential Knowledge (2024): 9.3.A, 9.3.A.4, 9.4.A, 9.4.A.1, 9.4.A.1.i, 9.4.A.1.ii, 9.4.A.2, 9.4.B, 9.4.B.1, 9.4.B.1.i, 9.4.B.1.ii,

9.4.B.1.iii, 9.6.A, 9.6.A.1, 9.6.A.2, 9.6.A.2.i, 9.6.A.2.iii, 9.6.A.3, 9.6.A.3.i, 9.6.A.3.ii Mastery Objective(s): (Students will be able to...)

• Calculate kinetic energy, internal energy and work done by the particles of a gas.

Success Criteria:

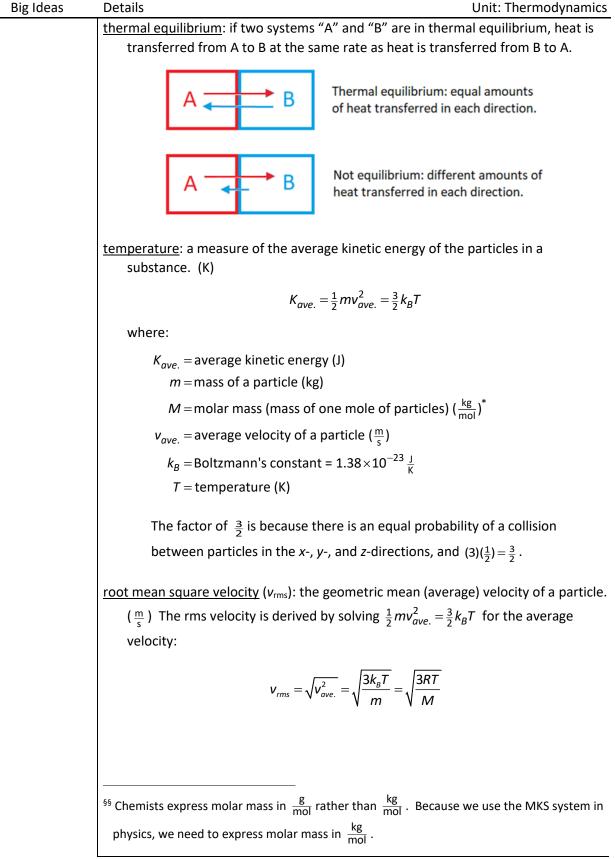
- Solutions have the correct quantities substituted for the correct variables.
- Algebra and rounding to appropriate number of significant figures is correct.

Language Objectives:

• Describe the different types of energy (kinetic, internal, work) and explain what they measure.

Tier 2 Vocabulary: internal, energy, work

Labs, Activities & Demonstrations:

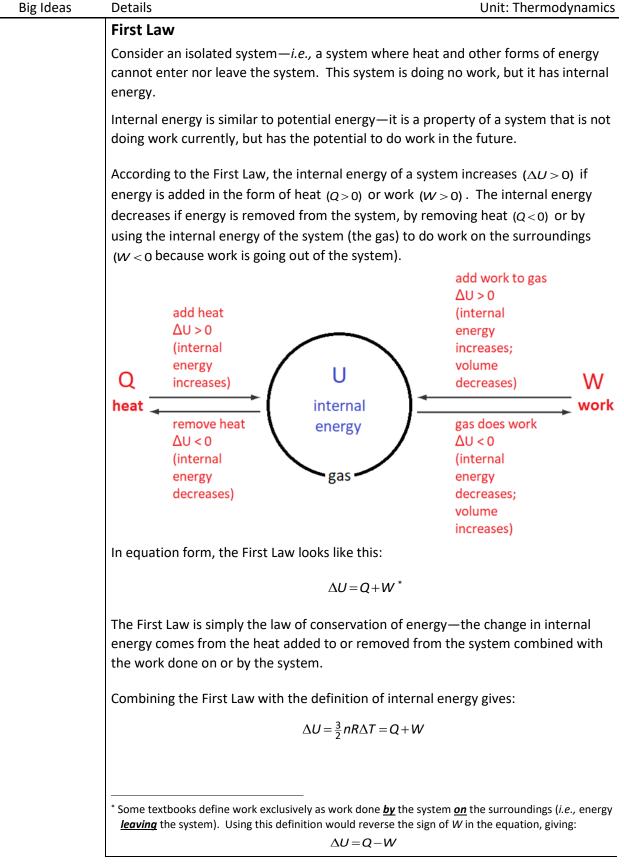

- heat exchange dice game
- dice distribution game
- entropy (microstates) percentile dice game

Notes:

thermodynamics: the study of heat-related (thermal) energy changes (dynamics)

Thermodynamics is an application of the law of conservation of energy. In Physics 1, we studied changes between gravitational potential energy and kinetic energy. Thermodynamic changes involve the same principle; the details and the equations, however, are quite different.

As was the case with gas laws, the topic of thermodynamics is studied by both chemists and physicists. Chemists tend to be more concerned with the heat produced and consumed by chemical changes and reactions. Physicists tend to be more concerned with the conversion between thermal energy (regardless of how it is produced) and other forms of energy, particularly mechanical.


Thermodynamics	Page: 1
Details	Unit: Thermodynam
<u>internal energy</u> (U [*]): the total thermal energy of of its particles.	a system due to the kinetic energ
If the kinetic energy of a single particle is K_{a}	$v_{e.} = \frac{3}{2}k_BT$, then the total kinetic
energy in a system that has N particles woul	-
$U = NK_{ave.} = \frac{3}{2}$	Nk _B T
Because it is generally unwieldy to perform on numbers of particles, it is more convenient t gives the equation for the internal energy of particles:	o use moles. Substituting nR for N
$U = \frac{3}{2} nR^{2}$	г
Similarly, a <u>change</u> in internal energy (ΔU) is <u>change</u> in temperature (ΔT):	related to the corresponding
$\Delta U = \frac{3}{2} nR\Delta T$ (=	$\frac{3}{2}Nk_{B}\Delta T$)
heat (Q): thermal energy transferred into or out	of a system. (J)
<u>work</u> (W): mechanical energy (such as the applic transferred into or out of a system. (J)	ation of a force over a distance)
The work that a gas can do comes from its a a force on it as it expands. If the pressure is W = Fd = F	constant:
$P = \frac{F}{A} \rightarrow A$	
$\therefore W = (PA)$	Δx
$\Delta V = A \Delta X$	
$\therefore W = P\Delta$	V
If a gas does work by expanding, the energy system) to the object that the gas is pushing means that when the volume increases (ΔV is system (<i>W</i> is negative). Conversely, if work is	against (the surroundings). This is positive), energy is leaving the is done to compress a gas, energy
entering the system in order to compress the decreases (ΔV is negative). This means that signs, which gives the equation:	
entering the system in order to compress the decreases (ΔV is negative). This means that	W and $P\Delta V$ must have opposite
entering the system in order to compress the decreases (ΔV is negative). This means that signs, which gives the equation:	W and $P\Delta V$ must have opposite
entering the system in order to compress the decreases (ΔV is negative). This means that signs, which gives the equation: $W = -P\Delta V$	W and $P\Delta V$ must have opposite

Big Ideas

	inermodynamics	Page: 12
Ideas De	ails	Unit: Thermodynami
	If pressure is not constant, then $W = -\Delta(PV)$, which m	neans you would need to
	calculate PV at each point, taking the limit as the dista	
	points shrinks to zero, and add them up. In calculus, t	his is the integral:
	$W = -\int P \mathrm{d}V$, where <i>P</i> is a function of <i>V</i> .	
	In an algebra-based course, we will limit ourselves to p	problems where the
	pressure is constant, or where the pressure change is	linear and you can use th
	average pressure, giving:	
	$W = -P_{ave.}\Delta V$	
<u>en</u>	ropy (S): "unusable" thermal energy in a system. Energ	gy in the form of entropy
	unavailable because it has "escaped" or "spread out".	(Entropy will be discuss
	further in the Second Law of Thermodynamics.)	
	Laws of Thermodynami	cs
Th	e laws of thermodynamics describe the behavior of syst	
	inges in heat energy.	
	historical reasons, the laws are numbered from $0-3^*$ ir	ostead of 1-4 because th
	w was added after the others, and the laws are often r	
	nber.	
	0. If a system is at thermal equilibrium, every compo	nent of the system has t
	same temperature. ("You have to play the game."	•
	1. Heat always flows from a region of higher internal	energy to a region of
	lower internal energy. Because internal energy is	
	temperature, this is equivalent to saying that heat	flows from a region of
	higher temperature to a region of lower temperat	ure. This means you car
	get more heat out of a system than you put in. (")	You can't win.")
	2. In almost every change, some energy is irretrievab	ly lost to the
	surroundings. Entropy is a measure of this "lost" e	energy. The entropy of t
	universe is always increasing, which means on any	
	always get out less energy than you put in. ("You	can't break even.")
	3. Conservation of energy always applies. In any close	sed system, the total
	energy (internal energy + entropy + work) remains	
	"lost," it turned into an increase in entropy. ("You	
	game.")	
* T	ere is one type of person in the world: those who start coun	ting from zero and those w
	art counting from one.	

	mermouynamics	Page: 113
Big Ideas	Details	Unit: Thermodynamics
	Zeroth Law (or Zero Law)	
	The zeroth law says that if you have multiple systems in heat transferred from "A" to "B" is equal to the heat tra then the systems must have the same temperature. The	nsferred from "B" to "A"),
	 If we have three (or more) systems "A," "B," and " equilibrium with B, and B is in thermal equilibrium B, and C must all have the same temperature, and equilibrium with C. (This is akin to the transitive p mathematics.) 	n with C, this means that A, A is therefore in thermal
	 If an object with a higher temperature (a "hotter" object with a lower temperature (a "colder" object object with higher temperature to the object with temperatures are the same (the objects are in the 	ct), heat will flow from the lower temperature until the

Details

	mermodynamies	rage. 113
Big Ideas	Details	Unit: Thermodynamics
	Sample Problem:	
	 Q: A cylinder containing 1.8 mol of an ideal gas with a temperature of 275 K has a piston with a weight on top. combined mass of the piston plus the weight is 2.0 kg, at the cross-sectional area of the piston is 0.01 m². The vol of the gas in the cylinder is 0.033 m³. 	nd
	Heat is added, and the volume of the gas increases t 0.040 m ³ . How much heat was added to the gas?	o gas
	A: When the gas is heated, the following occur:	
	 In order to increase the volume, the gas has to expan which means the temperature needs to increase. We know how much the volume increased, and the press remains constant (the piston pushes the same amour 	sure
	throughout the process). We can use $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ to f	ind
	the final temperature of the gas.	
	$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \rightarrow \frac{0.033}{275} = \frac{0.040}{T_2} \rightarrow$	$T_2 = 333 \mathrm{K}$
	2. The increase in temperature means the internal energy increased. We can use $\Delta U = \frac{3}{2} nR\Delta T$ to find out how	
	energy of the gas increased (ΔU). The equation ΔU = some of the heat energy needed to be used for the in energy, and the rest of it was used to do the work of	crease in internal
	$\Delta U = \frac{3}{2} nR\Delta T \rightarrow \Delta U = (\frac{3}{2})(1.8)(8.31)(333)$	3–275) = 1301 J
	3. We can calculate the work used to raise the piston from physics 1: $W = mg\Delta h$ (Note that $\Delta V = A\Delta h$.)	om the work equation
	$W = -mg\Delta h = -mg\frac{\Delta V}{A} = -(2)(10)\frac{0.007}{0.01} = -14$ J	
	The work is negative because the energy is going out (remember that the system is the gas) and into the su	•
	4. Once we have ΔU and W , we can find Q by applying	the first law:
	$\Delta U = Q + W$	
	1301 = <i>Q</i> + (-14)	
	1315 J=Q	

Alternatively, we could calculate the work using $W = -P\Delta V$, but we would need
to use gauge pressure rather than absolute pressure. (See the explanation
below.)

The first two steps are the same as above.

Big Ideas

Details

- 1. This step is the same as step #1 above—we need to find the temperature change necessary to produce the change in volume.
- 2. This step is the same as step #2 above—we need to calculate the change in internal energy of the gas caused by the change in temperature.
- 3. Instead of calculating the work using equations from physics 1, we can use $W = -P\Delta V$. However, pressure needs to be the amount of pressure that is doing the work, which is the difference in pressure between the inside of the piston and the outside of the piston. (This would be the gauge pressure inside the cylinder.) We can calculate this using the pressure equation from fluids in physics 1:

$$P = \frac{F}{A} = \frac{(2)(10)}{0.01} = 2\,000\,\text{Pa}$$

This is the pressure at which the gas needs to do work.

Once we have the pressure, the work is given by:

 $W = -P\Delta V$ $\Delta V = 0.040 - 0.033 = 0.007 \text{ m}^3$ W = -(2000)(0.007) = -14 J

4. Once we have ΔU and W, we can find Q by applying the first law:

 $\Delta U = Q + W$ 1301 = Q + (-14)1315 J = Q

-	-
Details	Unit: Thermodynamics
Second Law	
The Second law tells us that heat energy cannot flow from hotter one unless work is done on the system. This is why your ice cream melts.	•
One consequence of this law is that no machine can work machines generate some heat, and some of that heat is al surroundings.	•
Entropy	
Because energy must be conserved, we have to account for but has "gotten lost" ("escaped" or "spread out") and is no system. Energy that has spread out and cannot be recover	o longer usable by the
For example, when an egg falls to the floor and breaks, gra energy is converted to a combination of internal energy (t the temperature of the egg), and entropy (heat energy that environment and "lost"). Over time, the internal energy in to the environment and "lost" as the egg cools off. Ultimatic gravitational potential energy ends up converted to entro energy that is dissipated and cannot be recovered.	he measurable increase in at is radiated to the n the egg is also radiated ately, all of the
Entropy is sometimes called "disorder" or "randomness", sense this is not correct. The entropy of your room is a <i>th</i> the heat energy in your room, not a commentary on the a the floor!	ermodynamic property of
Whenever heat is transferred from an object with a higher with a lower temperature, the heat "spreads out" as it wa amount of energy that goes into this "spread" is called ent	rms the colder object. The
$\frac{Q}{Heat Transfer}$ (hot) $\Delta S = Entropy = \frac{Q}{T}$	T ₂ (cold)
	Second Law The Second law tells us that heat energy cannot flow from hotter one unless work is done on the system. This is why your ice cream melts. One consequence of this law is that no machine can work machines generate some heat, and some of that heat is al surroundings. Entropy Because energy must be conserved, we have to account for but has "gotten lost" ("escaped" or "spread out") and is many system. Energy that has spread out and cannot be recover For example, when an egg falls to the floor and breaks, gra- energy is converted to a combination of internal energy (the the temperature of the egg), and entropy (heat energy that environment and "lost"). Over time, the internal energy in to the environment and "lost" as the egg cools off. Ultimated gravitational potential energy ends up converted to entrope energy that is dissipated and cannot be recovered. Entropy is sometimes called "disorder" or "randomness", sense this is not correct. The entropy of your room is a <i>th</i> the heat energy in your room, not a commentary on the at the floor! Whenever heat is transferred from an object with a higher with a lower temperature, the heat "spreads out" as it was amount of energy that goes into this "spread" is called energy Heat Transfer

If the heat could be transferred in a way that is completely reversible (which is impossible and would take an infinite amount of time), then you would be able to recover the energy that was converted to entropy when transferring it back to the hotter object. We call this fictitious heat "reversible heat," denoted Q_{rev} .

honors (not AP®)

Big Ideas

Details

 $\Delta S = \frac{Q_{rev}}{T}$

Real energy transfers that take place in finite amounts of time can never recover all of the energy that was turned into entropy. This means the actual increase in entropy is always more than the amount that would occur in a reversible process:

$$\Delta S = \frac{Q_{rev}}{T} \ge \frac{Q}{T}$$

In other words, the energy that is lost to entropy by transfer of an amount of heat Q

would be exactly $\frac{Q}{T}$ for a completely reversible process (*i.e.*, $Q = Q_{rev}$), and more

than that for any real process.

Because actual heat transfer in a finite amount of time cannot be completely reversible, some heat is lost to the surroundings and the actual entropy change is always greater than the actual heat change at a given temperature. The concept of a reversible process is an idealization that represents the maximum amount of work that could theoretically be extracted from the process.

Consequences of the Second Law

- The total entropy of an isolated system can never decrease and is constant only when all of the thermodynamic processes are reversible.
- Localized energy will tend to disperse (spread out). When this happens, thermal energy is lost to the surroundings, and the entropy of the system increases.
- Entropy is a state function, which means the entropy of a system does not depend on the energy pathway the system follows.
- Closed systems spontaneously move toward thermodynamic equilibrium (*i.e.*, all parts of the system have the same temperature). When a system has reached thermodynamic equilibrium, the system's entropy is maximized.
- Because the universe is a closed system, the entropy of the universe is always increasing.
- The entropy of an open system can be decreased through a transfer of energy into the system from the surroundings.

In physics, there is a hierarchy of thinking. Conservation of energy, conservation of momentum, and the Second Law are at the top of the hierarchy. Just as special relativity tells us that time, distance and mass all need to be changeable in order to maintain conservation of energy and momentum, the Second Law explains why time cannot move backwards—to do so would require a decrease in the entropy of the universe.

Third Law

Details

Big Ideas

The Third Law tells us that in an isolated system, the total energy of the system must be constant. (An isolated system is a system for which it is not possible to exchange energy with the surroundings.) This makes intuitive sense; because energy must be conserved, if no energy can be added or taken away, then the total energy cannot change.

Thermodynamic Quantities and Equations

Big Ideas

Details

Because energy is complex and exists in so many forms, there are many thermodynamic quantities that can be calculated in order to quantify the energy of different portions of a system. The following is a list of some of the more familiar ones:

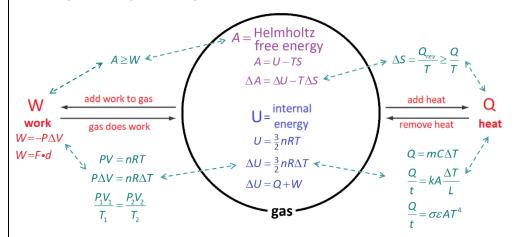
Variable	Name	Description
Q	heat	Thermal energy (heat) transferred into or out of a system due to a difference in temperature.
W	work	Mechanical energy transferred into or out of a system through the action of a force applied over a distance. $W = \vec{F} \cdot \vec{d} = -P\Delta V$
U*	internal energy	Total thermal (non-chemical) energy contained within the particles of a system because of their kinetic energy. $U = \frac{3}{2}nRT \qquad \Delta U = Q + W = \frac{3}{2}nR\Delta T$
S	entropy	Energy that is "lost" (inaccessible) because it has spread to the surroundings or has spread to separate microstates and cannot be utilized by the particles of the system.
A	Helmholtz free energy	Useful work that could theoretically be obtained from a system. $A = U - TS \qquad \Delta A = \Delta U - T\Delta S$
Н	enthalpy	Heat energy available in a chemical reaction. $H = U + PV$ $\Delta H = \Delta U + P\Delta V = \Delta U - W$
G	Gibbs free energy	Total energy available in a chemical reaction. $G = H - TS$ $\Delta G = \Delta H - T\Delta S$

Selected Thermodynamic Quantities

Because this is a physics course, we will leave enthalpy and Gibbs free energy to the chemists.

* Some chemistry textbooks use the variable *E* instead of *U*.

Details


Big Ideas

Thermodynamics Equations Used in This Course

Most of the thermodynamics problems encountered in this course are applications of the following equations:

Equation	Quantities that are Changing
$U = \frac{3}{2}nRT$ $\Delta U = \frac{3}{2}nR\Delta T$	internal energy vs. temperature
$\Delta U = Q + W$	internal energy vs. heat & work
$PV = nRT$ $P\Delta V = nR\Delta T$	pressure & volume vs. temperature
$W = -P\Delta V^*$	work vs. volume

What makes thermodynamics challenging is that there are many relationships between the quantities in these equations, as shown in the following thermodynamics equation map:

It is often necessary to combine equations. For example:

$$\Delta U = \frac{3}{2} nR\Delta T = Q + W$$
$$-W = P\Delta V = nR\Delta T$$

(Note that we moved the negative sign from $W = -P\Delta V$ to the other side of the equation.)

^{*} In an algebra-based course, we need to restrict ourselves to problems in which the pressure remains constant during volume changes. In a calculus-based course, this equation would be $W = -\int P dV$, where *P* is a function of *V*.

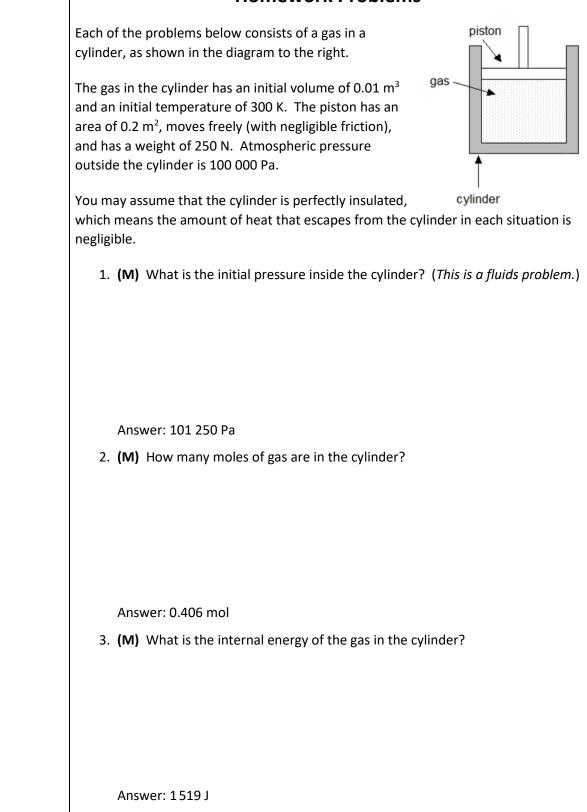
The problems that you will encounter will involve a change in a measurable state variable (pressure, volume and/or temperature). To solve these problems, you will need to:

- 1. Determine what the change involves:
 - heat transfer (Q)

Big Ideas

Details

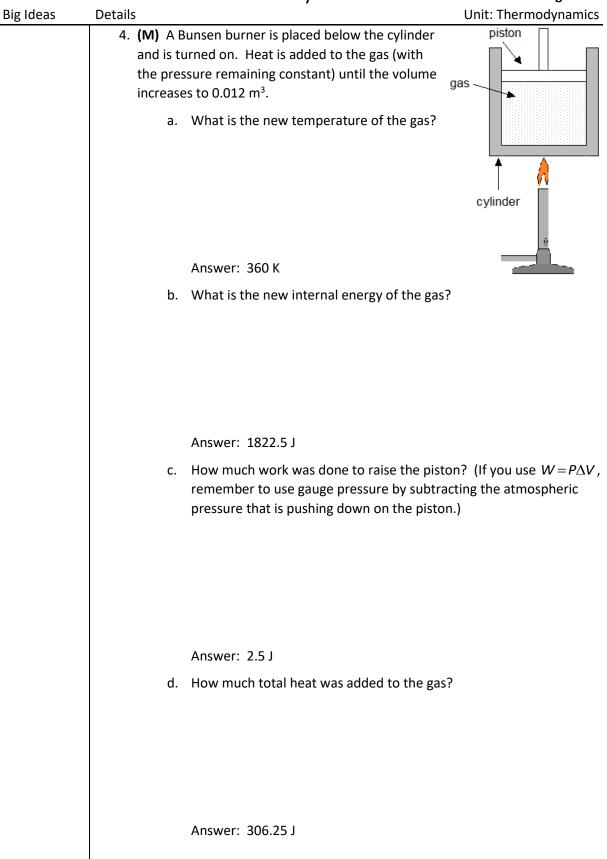
- work (*W*) resulting from a change in volume (ΔV).
- a change in internal energy (ΔU) resulting from a change in temperature (ΔT).


(There can be more than one of these happening at the same time.)

2. If necessary, determine initial and/or final values of these state variables in relation to other variables using equations such as:

•
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

- PV = nRT
- 3. Apply algebraic combinations of these equations to find each of the necessary quantities to answer the question.


Homework Problems

Big Ideas

Details

Page: 124

Big Ideas	Details	Unit: Thermodynamics
	5. (M) Su	ppose instead that the piston from problem #4 above was fixed in
		n and was not allowed to move, so the volume remains constant at
	0.01 m ³	while the 306.25 J of heat from question 4d was added.
	a.	What is the new temperature of the gas?
		Answer: 360.5 K
	b.	What is the new pressure of the gas?
	5.	which is the new pressure of the gas.
		Answer: 121 667 Pa
	C.	If the piston is then released and allowed to move freely, what will the new pressure be inside the cylinder?
		the new pressure be inside the cylinder?
		Answer: 101 250 Pa (the same as in problem #1 above)