Voltaic Cells (Batteries)

voltaic Cells (Batteries) Page: 208
Details Unit: DC Circuits
Voltaic Cells (Batteries)*
Unit: DC Circuits
NGSS Standards/MA Curriculum Frameworks (2016): N/A
AP [®] Physics 2 Learning Objectives/Essential Knowledge (2024): N/A
Mastery Objective(s): (Students will be able to)
• Explain how a battery works.
 Identify the components of a battery and their function.
Success Criteria:
 Descriptions are accurate and components are identified correctly.
Language Objectives:
• Explain how a battery works. (Domains: speaking, writing)
 Identify the components of a battery and their function (Domains: speaking,
writing)
Tier 2 Vocabulary: battery, current
Labs, Activities & Demonstrations:
building a voltaic cell
Notes:
voltaic cell: (also called a galvanic cell) a chemical apparatus that uses an electrochemical reaction to produce electricity. (A battery is a type of galvanic
cell.)
electrochemistry: using chemical oxidation & reduction (redox) reactions to
produce electricity or vice-versa. In an electrochemical reaction, oxidation and
reduction reactions occur in separate containers, and electrons travel from one container to the other. In physics, the chemical energy from the combination of
the two reactions is the potential difference (voltage) that moves those
electrons through an electric circuit.
electrolytic cell: a cell similar to a galvanic cell, except that the reaction is
nonspontaneous, and electricity is used to add the energy needed to make the
reaction occur. (Electrolysis of water is an example.)
electrode: a solid metal strip where either oxidation or reduction occurs. The metal
strips also conduct the electrons into or out of the electric circuit.
* Voltaic cells are taught in AP [®] Chemistry as part of the topic of electrochemistry. The topic is presented here in order to explain where the electric potential in a battery comes from.

Voltaic Cells (Batteries)

Big Ideas	Details Unit: DC Circuits
honors	anode: the negatively (-) charged electrode. At the anode:
(not AP®)	• Oxidation occurs. (Atoms from the anode are oxidized into positive ions.)
	• These positive ions are released into the solution. (<i>I.e.,</i> the anode loses mass.)
	• The electrons produced by oxidation are forced through the wire toward the
	cathode via the electric circuit.
	cathode: the positively (+) charged electrode. At the cathode:
	• Reduction occurs. (Ions from the solution are reduced to neutral metal
	atoms.)
	• These metal atoms are deposited onto the cathode. (<i>I.e.,</i> the cathode gains mass.)
	• The electrons needed for reduction are brought in through the wire from the anode via the electric circuit.
	salt bridge: a salt solution that is connected to both half-cells. The salt bridge
	provides ions for the two half-cells in order to keep the charges balanced. (If the
	charges are not allowed to balance, opposite charges would build up in both cells and the reaction would stop.) The salt solution must be made of ions that
	do not take part in the reactions at the cathode or anode. (KNO ₃ is commonly
	used.)
	V
	electric circuit
	anode salt bridge
ļ	anode (oxidation) salt bridge cathode (reduction)
	\Box Zn $\left(\int KCl \right)$ Cu $\left(\int Cu$
	$7 2^+$
	$\begin{bmatrix} Zn^{2+} \\ SO_4^{2-} \end{bmatrix}$ $\begin{bmatrix} Cu^{2+} \\ SO_4^{2-} \end{bmatrix}$
	$Zn(s) + 2e^- \longrightarrow Zn^{2+}$ $Cu^{2+} + 2e^- \longrightarrow Cu(s)$
İ	
i	

Voltaic Cells (Batteries)

Big Ideas	Details Unit: DC Circuits
honors (not AP®)	standard voltage (\mathcal{E}°): the voltage (electric potential) of an electrochemical reaction under "standard conditions".
	• "Standard conditions" means temperature is 25 °C, all ion concentrations are
	$1\frac{mol}{L}$, and all gas pressures are 1 atm.*
	 The actual voltage of the cell, V, depends on the temperature, ion concentrations and gas pressures. At standard conditions, V = E°.
	 <i>E</i>° values for reduction reactions are published in tables of Standard Reduction Potentials.
	• <i>E</i> ° for an oxidation reaction is the negative of the <i>E</i> ° for the reverse (reduction) reaction. (<i>I.e.</i> , if you reverse the reaction, change the sign of <i>E</i> °.)
	• The standard voltage of a cell is the sum of the standard voltages for the oxidation and reduction half-cells:
	• $E^o = E^o_{reduction} + E^o_{oxidation}$
	 If E^o > 0, then the reaction happens spontaneously. This is what happens when a battery is used to power a circuit.
	 If E^o <0, the reaction does not occur spontaneously, and energy is required to force the reaction to occur. This is what happens while a battery is charging.
	* You can tell that "standard conditions" were defined by chemists. If they were defined by physicists, standard pressure would be 1 bar rather than 1 atm.
•	