Sound Level (Loudness)

Unit: Mechanical Waves

Details

Big Ideas

NGSS Standards/MA Curriculum Frameworks (2016): N/A

AP[®] Physics 2 Learning Objectives/Essential Knowledge (2024): 14.1.A.6,

14.1.A.6.ii

Mastery Objective(s): (Students will be able to ...)

- Explain sound levels in decibels.
- Explain the Lombard Effect.

Success Criteria:

• Descriptions & explanations account for observed behavior.

Language Objectives:

• Explain how loudness is measured.

Tier 2 Vocabulary: level

Labs, Activities & Demonstrations:

• VU meter.

Notes:

sound level: the perceived intensity of a sound. Usually called "volume".

Sound level is measured in decibels (dB). One decibel is one tenth of one bel, but the unit bel is not used.

The decibel is defined based on the power (energy per unit time, which you should remember from Physics 1) that is carried by a sound wave:

$$L_{P} = 10\log\frac{P}{P_{o}}$$

where L_P is the loudness, *P* is the power carried by the sound wave, and P_o is the power carried by a reference wave that is defined to be zero decibels.

You will not be asked to calculate decibels from this equation, but you should understand that because the scale is logarithmic, a difference of one bel (10 dB) represents a tenfold increase or decrease in sound level.

Sound Level (Loudness)

The following table lists the approximate sound levels of various sounds:

sound level (dB)	Description
0	threshold of human hearing at 1 kHz
10	a single leaf falling to the ground
20	background in TV studio
30	quiet bedroom at night
36	whispering
40	quiet library or classroom
42	quiet voice
40–55	typical dishwasher
50–55	normal voice
<u> </u>	TV from 1 m away
60	normal conversation from 1 m away
60–65	raised voice
60–80	passenger car from 10 m away
70	typical vacuum cleaner from 1 m away
75	crowded restaurant at lunchtime
72–78	loud voice
85	hearing damage (long-term exposure)
84–90	shouting
80–90	busy traffic from 10 m away
100-110	rock concert, 1 m from speaker
110	chainsaw from 1 m away
110-140	jet engine from 100 m away
120	threshold of discomfort
120	hearing damage (single exposure)
130	threshold of pain
140	jet engine from 50 m away
194	sound waves become shock waves

Big Ideas

Details

Sound Level (Loudness)

	Sound Lever (Loudness)	Page: 345
Big Ideas	Details	Unit: Mechanical Waves
honors	Adjusting Sound Level in Conversation	
(not AP®)	In crowds, people unconsciously adjust the sound levels of be heard above the ambient noise. This behavior is called named for Étienne Lombard, the French doctor who first o	the Lombard effect,
	The Lombard coëfficient is the ratio of the increase in sour the increase in sound level of the background noise:	nd level of the speaker to
	$L = \frac{\text{increase in speech level (dB)}}{\text{increase in background noise (db)}}$	1B)
	Researchers have observed values of the Lombard coëffici 1.0, depending on the circumstances.	ent ranging from 0.2 to
	When you are working in groups in a classroom, as the not person has to talk louder to be heard, which in turn makes The Lombard effect creates a feedback loop in which the s louder and louder until your teacher complains and everyo volume.	s the noise level louder. Sound gets progressively
ļ		