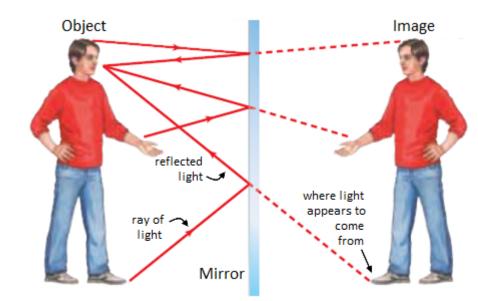
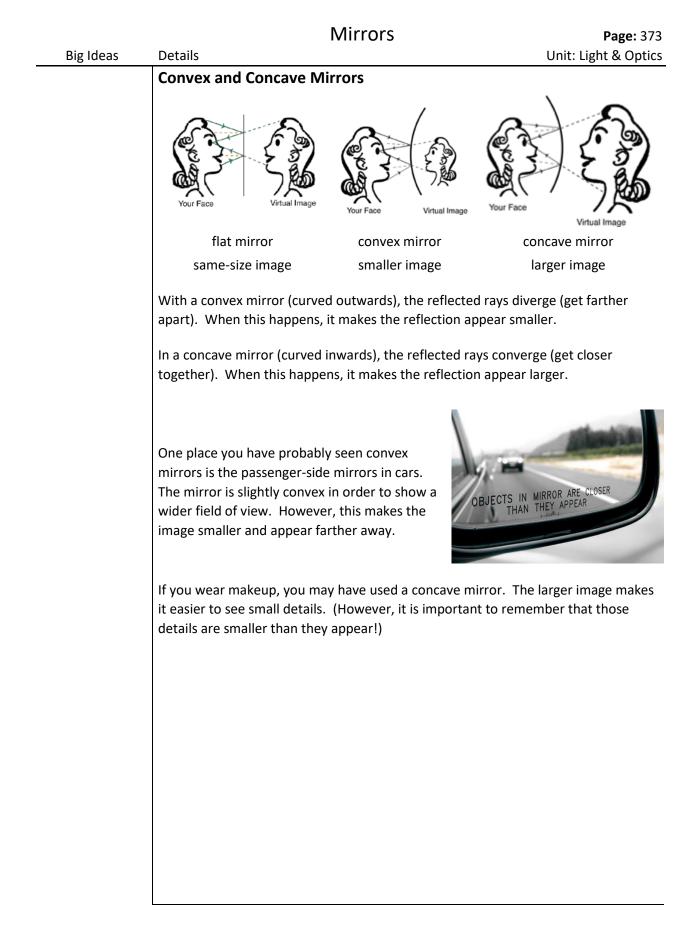
	Mirrors	Page: 37
g Ideas	Details	Unit: Light & Option
	Mirrors	
	Unit: Light & Optics	
	NGSS Standards/MA Curriculum Frameworks (2016): N/A	
	AP [®] Physics 2 Learning Objectives/Essential Knowledge (2024 13.2.A.2, 13.2.A.3, 13.2.A.4, 13.2.A.5, 13.2.A.6, 13.2.A.7, 13.2.A.8, 13.2.A.9, 13.2.A.9.i, 13.2.A.9.ii	
	Mastery Objective(s): (Students will be able to)	
	 Draw ray tracing diagrams for reflection from flat and cu mirrors. 	rved (spherical)
	 Numerically calculate the distance from the mirror to its to the image. 	focus and the mirror
	Success Criteria:	
	 Ray diagrams correctly show location of object, focus and 	d image.
	 Calculations are correct with correct algebra. 	
	Language Objectives:	
	 Explain when and why images are inverted (upside-dowr 	ı) <i>vs.</i> upright.
	Tier 2 Vocabulary: light, reflection, virtual image, real image, r	nirror, focus
	Labs, Activities & Demonstrations:	
	Mirascope	
	 turn a glove inside-out 	
	Neter	
	Notes:	
	<u>mirror</u> : a surface that light rays reflect from at the same angle from.	the light rays came
	<u>convex</u> : an object that curves outward.	
	concave: an object that curves inward.	
	flat: an object that is neither convex nor concave.	
	<u>ray</u> : a beam of light. Rays travel in a straight line unless they an reflection or refraction.	re redirected by
	<u>laser</u> : a beam of coherent light that travels in a straight line wit Laser light is spatially coherent, meaning that it can be focu not spread out, and also temporally coherent, meaning that narrow frequency spectrum. (We often describe lasers as single frequency.)	used tightly and does at the light is of a ver

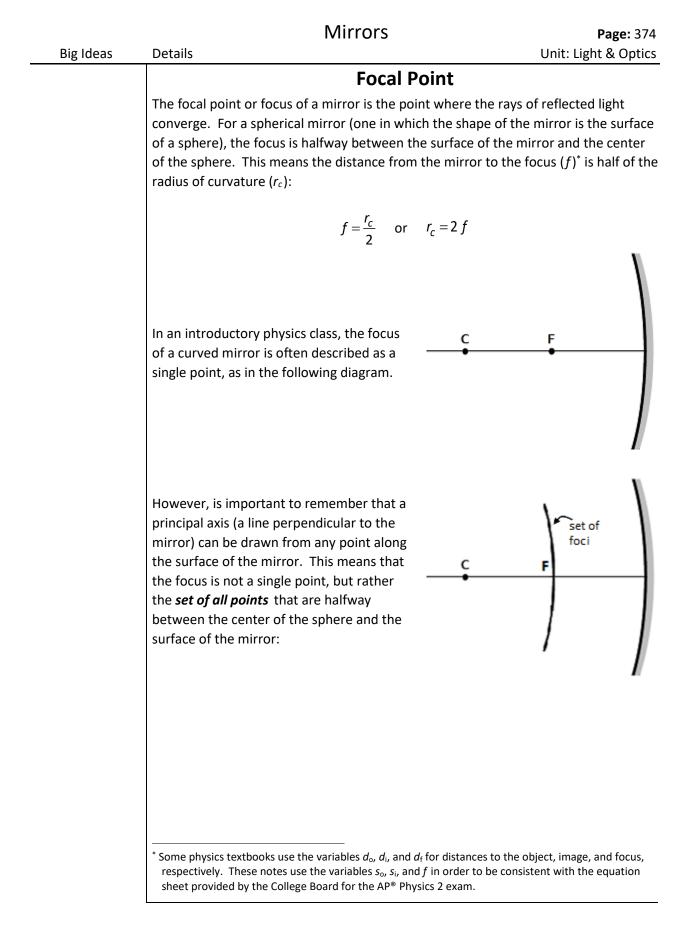

	Mirrors	Page: 371
Big Ideas		Jnit: Light & Optics
	"Laser" is an acronym for "Light Amplification by Stimulated E Radiation". The first laser was built in 1960 by Theodore Mair	
	focal point: the point at which parallel rays striking a mirror conve	rge.
	principal axis: a line perpendicular to a mirror (<i>i.e.,</i> with an angle such that a ray of light is reflected back along its incident (inco	
	The principal axis is often shown as a single horizontal line, bu mirror has a principal axis.	t every point on a

Big Ideas

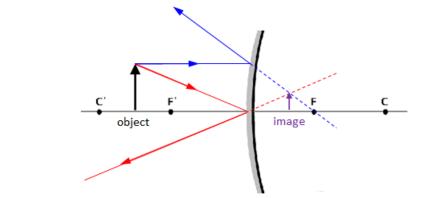
Flat Mirrors

Details


With a flat mirror, the light reflected off the object (such as the person in the picture below) bounces off the mirror and is reflected back. Because our eyes and the part of our brains that decode visual images can't tell that the light has been reflected, we "see" the reflection of the object in the mirror.



If the mirror is flat, the reflection is the same size and the same distance from the mirror as the actual object. However, the image looks like it is reversed horizontally, but not vertically.


It would seem that the mirror "knows" to reverse the image horizontally but not vertically. (Of course this is not true. If you want the mirror to reverse the image vertically, all you need to do is put the mirror on the floor.) What is actually happening is that light is reflected straight back from the mirror. Anything that is on your right will also be on the right side of the image (from your point of view; if the image were actually a person, this would be the other person's left). Anything that is on top of you will also be on top of the image as you look at it.

What the mirror is doing is the same transformation as flipping a polygon over the *y*-axis. *The reversal is actually front-to-back* (where "front" means closer to the mirror and "back" means farther away from it).

		Mirrors	Page: 375
Big Ideas	Details		Unit: Light & Optics
	-	Ray Tracin of finding the location, size and) the rays of light to see where t	orientation of an image in a mirror
	the princ the same principal relative	light that hits the mirror on cipal axis is reflected back at e angle relative to that axis. (The angle of incidence to the principal axis equals e of reflection.)	C F
	parallel t reflected	light that hits the mirror to the principal axis is I directly toward or away e focal point of the mirror (the	C F
	-	aw a pair of rays from the top o e, the intersection will be at the	f the object as described by #1 and top of the image of the object.
	strikes the mirro	r parallel to the principal axis (fr eflected through the focus (also	oal axis (step 1 above), the ray that om step 2 above) , and that same from step 2 above)—are called the
	Convex Mirro For a convex mir smaller than the	ror, the image is always virtual (behind the mirror) and is always

	101111013	Page: 376
Big Ideas	Details	Unit: Light & Optics
	Concave Mirrors	
	For a concave mirror, what happens with the image chan the object is relative to the center of curvature and the for tracing in each the following cases.	
	 If the object is closer to the mirror than the focus, you see a virtual image (behind the mirror) that is upright (right-side-up), and larger than the original. 	object image
	 If the object is at the focus, there is no image because the rays do not converge. 	object C F
	 3. If the object is between the focus and the center of curvature, you see a real image (in front of the mirror) that is behind the object, inverted (upside-down), and larger. 	e object

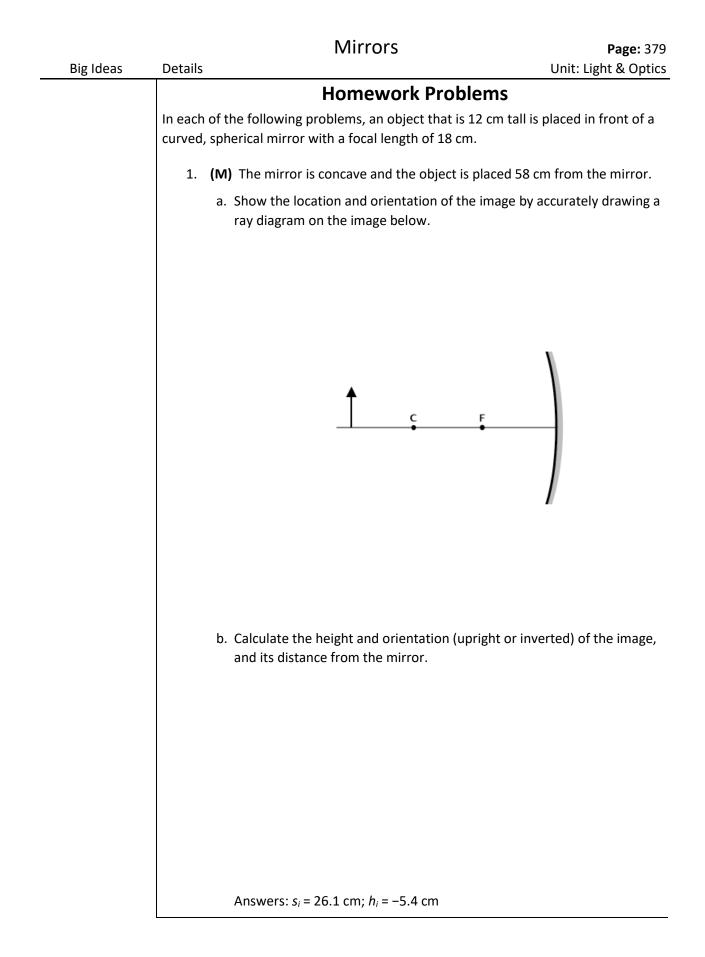
	Mirrors	Page: 377
Big Ideas	Details	Unit: Light & Optics
	you see a real, inverted image that is the	oject C F
	 5. If the object is farther from the mirror than the center of curvature, you see a real, inverted image that is smaller and object closer to the mirror than the object. 	C image F
	Equations	ľ
	The distance from the mirror to the focus (f) can be calcu the object (s_o) and the distance to the image (s_i), using th	
	$\frac{1}{s_o} + \frac{1}{s_i} = \frac{1}{f}$	
	Distances for the image (s_i) and focus (f) are positive in fread image would be), and negative behind the mirror (where).	
	The height of the image (h_i) can be calculated from the he the two distances $(s_i$ and $s_o)$, using the following equation	• • • •
	$M = \frac{h_i}{h_o} = -\frac{s_i}{s_o}$	
	$h_o = s_o$ A positive value for h_i means the image is upright (right-si	ide-up), and a negative
	value for h_i means the image is inverted (upside-down).	
	magnification: the ratio of the size of the image to the size	ze of the object.

2 0 000	
Sample	Problem:

Details

Big Ideas

- Q: An object that is 5 cm high is placed 9 cm in front of a spherical convex mirror. The radius of curvature of the mirror is 10 cm. Find the height of the image and its distance from the mirror. State whether the image is real or virtual, and upright or inverted.
- A: The mirror is convex, which means the focus is behind the mirror. This is the side where a **virtual** image would be, so the distance to the focus is therefore negative. The distance to the focus is half the radius of curvature, which means f = -5 cm. From this information, we can find the distance from the mirror to the image (s_i):


$\frac{1}{1} + \frac{1}{1} = \frac{1}{1}$	
$s_o s_i f$	1 - 14
$\frac{1}{1+1} = \frac{1}{1}$	s _i 45
$\frac{1}{9} + \frac{1}{s_i} = \frac{1}{-5}$	$s_i = -\frac{45}{14} = -3.2 \mathrm{cm}$
$\frac{5}{1} + \frac{1}{1} = -\frac{9}{1}$	$\frac{3_i}{14} = \frac{-3.2}{14}$
45 <i>s_i</i> 45	

The value of -3.2 cm means the image is a virtual image located 3.2 cm behind the mirror.

Now that we know the distance from the mirror to the image, we can calculate the height of the image (h_i) :

$$\frac{h_i}{h_o} = -\frac{s_i}{s_o}$$
(5)(3.2) = 9 h_i
$$\frac{h_i}{5} = -\frac{-3.2}{9}$$
 $h_i = \frac{16}{9} = +1.8 \text{ cm}$

The image is 1.8 cm high. Because the height is a positive number, this means the image is upright (right-side-up).

		Mirrors	Page: 380
Big Ideas	Details	(S) The mirror is concave and the object is placed	Unit: Light & Optics
	2.	a. Show the location and orientation of the ima ray diagram on the image below.	
		F.	
		b. Calculate the height and orientation of the ir the mirror.	nage, and its distance from
		Answers: $s_i = 36$ cm; $h_i = -12$ cm	

			Mirrors	Page: 381
Big Ideas	Details	(5)	The mirror is concave and the object is placed 32 cr	Unit: Light & Optics
	5.	а.	Show the location and orientation of the image by ray diagram on the image below.	
				١
			C F	
		b.	Calculate the height and orientation of the image, the mirror.	and its distance from
			Answers: <i>s</i> ^{<i>i</i>} = 41.1 cm; <i>h</i> ^{<i>i</i>} = −15.4 cm	

			Mirrors	Page: 382
Big Ideas	Details	()		Unit: Light & Optics
	4.	(M)	The mirror is concave and the object is placed 6 c	
		а.	Show the location and orientation of the image b ray diagram on the image below.	y accurately drawing a
			- C F	
		b.	Calculate the height and orientation of the image the mirror.	e, and its distance from
			Answers: $s_i = -9$ cm; $h_i = 18$ cm	

			Mirrors	Page: 383
Big Ideas	Details			Unit: Light & Optics
	5.	(M)	The mirror is convex and the object is placed 15 c	m from the mirror.
		a.	Show the location and orientation of the image b ray diagram on the image below.	y accurately drawing a
		b.	Calculate the height and orientation of the image the mirror. Answers: $s_i = -8.2 \text{ cm}; h_i = 6.5 \text{ cm}$	c e, and its distance from
			-113 Wers $3_1 = -0.2 \text{ Cm}$ $m_1 = 0.3 \text{ Cm}$	