Details

Blackbody Radiation

Unit: Quantum and Particle Physics

NGSS Standards/MA Curriculum Frameworks (2016): N/A

AP[®] Physics 2 Learning Objectives/Essential Knowledge (2024): 15.4.A, 15.4.A.1, 15.4.A.2, 15.4.A.3, 15.4.A.3.i, 15.4.A.3.ii, 15.4.A.3.iii

Mastery Objective(s): (Students will be able to...)

• Describe the electromagnetic radiation emitted by an object due to its temperature.

Success Criteria:

• Calculations are correct

Language Objectives:

• Be able to explain and draw & label representations of an atom.

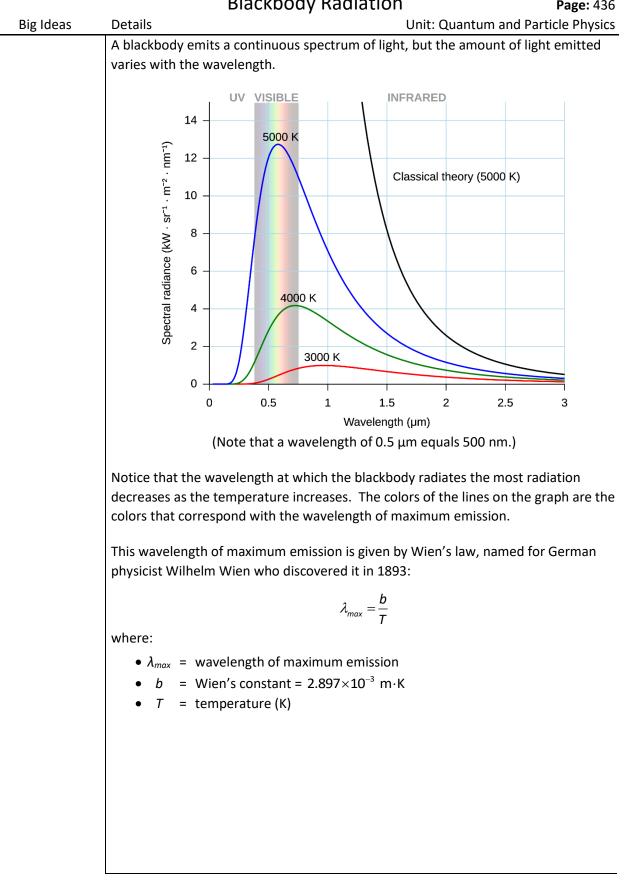
Tier 2 Vocabulary: atom, charge, nucleus

Notes:

As discussed in the *Thermodynamics* topic starting on page 109, matter contains internal thermal energy, *U*, based on its temperature:

$$U = \frac{3}{2}nRT = \frac{3}{2}Nk_BT$$

where:


- U = internal thermal energy (J)
- n = number of moles of substance (mol)
- N = number of particles
- R = the gas constant = $8.31 \frac{J}{mol \cdot K}$
- K_B = Boltzmann's constant = $1.38 \times 10^{-23} \frac{J}{K}$
- T = temperature (K)

Matter spontaneously converts some of its internal thermal energy into electromagnetic energy, which radiates from it.

<u>blackbody</u>: an object that absorbs all of the heat energy that comes in contact with it (and reflects none of it).

<u>blackbody radiation</u>: the process of absorbed energy being emitted by a perfect blackbody.

Because a blackbody absorbs all of the radiation energy that falls onto it, if it is in thermal equilibrium (constant temperature), it must emit the same amount of energy as blackbody radiation.

as De				Blo	аскр	ody	Rdui	allo	n				Pa	ge: 43
	tails												rticle	-
	hough													
	en usin	-		•				-						s the
col	ors of I	meta	als a	t diffe	erent	tempe	rature	s, up t	o the r	neltin	g poin	t of st	eel:	
<u>،</u>	550) 6	30	680	740	780	810	850	900	950	1000	1100	1200	>130
-	1022	2 11	66	1256	1364	1436	1490	1562	1652	1742	1832	2012	2192	>237
Γhi	s is the	orio	gin o	f nhr	asos li	ko "ro	d hot '	,						
		(0 -	I.										
	ckbody face of	-									-		es on t	tne
10	00 2(000	300	10 4	000	5000	60'00	70'00	800	0 90	00 1	0000	11000	1200
						Т	empera	ature (K)					
-	nting fi these t					er mor	itors.	Fortur	nately,	these	devic	es are	not a	ctual

Big Ideas Details Unit: Quantum and Particle Physics The rate at which energy is emitted from a blackbody is proportional to the surface area of the body and to temperature to the fourth power, as described by the Stefan-Boltzmann law, which was derived theoretically by Ludwig Boltzmann and empirically by Josef Stephan in 1900: $P = \frac{Q}{t} = \sigma A T^4$ where: • P = power(W)• Q = heat (J) • t = time(s)• σ = Stefan-Boltzmann constant $\left(\sigma = 5.67 \times 10^{-8} \frac{W}{m^2 \cdot K^4}\right)$ • $A = area (m^2)$ • T = temperature (K) <u>Stefan-Boltzmann constant</u> (σ): the constant that makes the above equation come out in watts. Note that the Stefan-Boltzmann constant is defined from other constants: $\sigma = \frac{2\pi^5 k_B^4}{15h^3 c^2}$, where k_B is the Boltzmann constant, *h* is Planck's constant, and *c* is the speed of light in a vacuum. $j/W_{i} m^{-2}$ 5×10^{8} 4×10^{8} power per unit area (P/A) Stefan-Boltzmann Law 3×10^{8} 2×10^{8} Wien's Law approximation 1×10^{8} 0 2000 4000 6000 8000 1×10^{4} T/K

temperature

	Diackbody Natiation Page: 439
Big Ideas	Details Unit: Quantum and Particle Physics
honors	As described in the subsection "Calculating Heat Transfer by Radiation" on page 46,
(not AP [®])	when energy is radiated by a substance that is not an ideal blackbody, we define a
	material-specific constant called emissivity.
	emissivity (ε): a ratio of the amount of heat radiated by a substance to the amount
	of heat that would be radiated by a perfect "blackbody" of the same
	dimensions.
	Emissivity is a dimensionless number (meaning that it has no units, because the
	units cancel), and is specific to the substance.
ļ	This is a the second to favor disting for a second black back as here as
	This gives the equation for radiation from a non-blackbody substance:
	$P = \frac{Q}{t} = \varepsilon \sigma A T^4$
ļ	where ε is the emissivity, and the other variables are as described above.
:	