


Particle Interactions

	Particle Interactions Page: 464
Big Ideas	Details Unit: Quantum and Particle Physics
honors (not AP®)	Specific interactions between particles can be shown pictorially in diagram called a Feynman diagram, named for American physicist Richard Feynman. The Feynman diagram tells the "story" of the interaction.
İ	The characteristics of a Feynman diagram are:
	 Straight lines represent the motion of a particle, such as an electron or positron. The arrow points to the right for a negatively charged particle, and to the left for a positively-charged particle.
i	2. A wavy line represents a photon (γ).
İ	3. A coiled line (like a spring) represents a gluon (g).
	 The x-axis is time. The interaction starts (in terms of time) on the left and proceeds from left to right.
	 The y-axis represents space. Lines coming together represent particles coming together. Lines moving apart represent particles moving away from each other. (Note that <i>the diagram is not a map</i>; particles can move together or apart in any direction.)
	6. Each vertex, where two or more lines come together, represents an interaction.
	Probably the best way to explain the diagrams is with examples.
	In this diagram, we start (at the left) with an electron (e^-) and photon (γ). The two come together, and the electron absorbs the photon.
	In this diagram, we start (at the left) with an electron (e^{-}) by itself. The electron emits a photon (γ) but is otherwise unchanged.

Particle Interactions

Particle Interactions

