Unit: Atomic and Nuclear Physics

NGSS Standards/MA Curriculum Frameworks (2016): HS-PS1-8

AP® Physics 2 Learning Objectives/Essential Knowledge (2024): 15.7.A, 15.7.A.2, 15.7.A.3, 15.7.A.4, 15.7.A.5

Mastery Objective(s): (Students will be able to...)

- Describe the radioactive decay of a given sample of material consisting of a finite number of nuclei.
- Determine the products of α , β -, and β + decay and electron capture.

Success Criteria:

• Equations give the correct starting material and products.

Language Objectives:

• Describe the changes to the nucleus during radioactive decay.

Tier 2 Vocabulary: decay, capture

Notes:

Details

Big Ideas

<u>nuclear equation</u>: a chemical equation describing the process of an isotope undergoing radioactive decay. For example:

 $^{238}_{92}U \rightarrow ^{234}_{90}Th + ^{4}_{2}He$

In a nuclear equation, the atomic number and mass number are conserved on both sides of the arrow. If you look at the bottom (atomic) numbers, and replace the arrow with an = sign, you will have the following:

92 = 90 + 2

Similarly, if you look at the top (mass) numbers, and replace the arrow with an = sign, you will have:

238 = 234 + 4

Nuclear Equations

Big Ideas	Details Unit: Atomic and Nuclear Physics
	Sample problems:
	Q: What are the products of beta-minus (β -) decay of ¹³¹ I?
	A: A β - particle is an electron, which we write as $\int_{-1}^{0} e$ in a nuclear equation. This
	means 131 I decays into some unknown particle plus $^{0}_{-1}e$. The equation is:
	${}^{131}_{53}\mathrm{I} \rightarrow {}^{m}_{\rho}X + {}^{0}_{-1}e$
	We can write the following equations for the atomic and mass numbers:
	Atomic #s: $53 = p + -1 \rightarrow p = 54$; therefore, X is Xe
	Mass #s: $131 = m + 0 \rightarrow m = 131$
	Therefore, particle X is $^{131}_{54}$ Xe So our final answer is:
	The two products of decay in this reaction are ${}^{131}_{54}$ Xe and ${}^{0}_{-1}e$.
	Q: Which particle was produced in the following radioactive decay reaction:
	$^{212}_{86}$ Rn $\rightarrow ^{208}_{84}$ Po + $^m_{\rho}X$
	A: The two equations are:
	Atomic #s: $86 = 84 + p \rightarrow p = 2$; therefore X is He
	Mass #s: $212 = 208 + m \rightarrow m = 4$
	Therefore, particle X is ${}_{2}^{4}$ He, which means it is an α particle.

Nuclear Equations

Homework	Problems
----------	-----------------

For these problems, you will need to use a Figure CC. Periodic Table of the Elements (on page 512 of your Physics Reference Tables) and radioactive decay information from *Table EE. Selected Radioisotopes* on page 513 of your Physics Reference Tables.

Give the nuclear equation(s) for radioactive decay of the following:

1. **(M)** ²²²Rn

Details

Big Ideas

2. **(M)** ⁸⁵Kr

3. **(S)** ²²⁰Fr

4. **(S)** ³⁷K

5. **(S)** ³H

Give the starting material for the following materials produced by radioactive decay:

6. **(M)** Alpha (α) decay resulting in $\frac{267}{108}$ Hs

7. **(M)** Beta-minus (β -) decay resulting in $\frac{185}{75}$ Re