Half-Life

Unit: Atomic and Nuclear Physics

NGSS Standards/MA Curriculum Frameworks (2016): N/A

AP Physics 2 Learning Objectives/Essential Knowledge (2024): 15.7.B, 15.7.B.1,

15.7.B.1.i, 15.7.B.1.ii, 15.7.B.1.iii, 15.7.B.2, 15.7.B.3

Mastery Objective(s): (Students will be able to...)

- Calculate the amount of material remaining after an amount of time.
- Calculate the elapsed time based on the amount of material remaining.

Success Criteria:

- Variables are correctly identified and substituted correctly into the correct equation.
- Algebra is correct and rounding to appropriate number of significant figures is reasonable.

Language Objectives:

• Explain why the mass of material that decays keeps decreasing.

Tier 2 Vocabulary: life, decay

Labs, Activities & Demonstrations:

• half-life of dice or M & M candies

Notes:

The atoms of radioactive elements are unstable, and they spontaneously decay (change) into atoms of other elements.

For any given atom, there is a certain probability, *P*, that it will undergo radioactive decay in a given amount of time. The half-life, τ , is how much time it would take to have a 50% probability of the atom decaying. If you start with *n* atoms, after one half-life, half of them (0.5*n*) will have decayed.

If we started with 32 g of 53 Fe, which has a half-life (τ) of 8.5 minutes, we would observe the following:

# minutes	0	8.5	17	25.5	34
# half-lives	0	1	2	3	4
amount left	32 g	16 g	8 g	4 g	2 g

	Half-Life	Page: 482
Big Ideas		mic and Nuclear Physics
	Amount of Material Remain Most half-life problems in a first-year high school physics counumber of half-lives and can be solved by making a table like However, on the AP [®] exam you can expect problems that do number of half-lives, and you need to use the exponential de	urse involve a whole e the one above. o not involve a whole
	Because <i>n</i> is decreasing, the number of atoms (and consequence remaining after any specific period of time follows the exponence $N = N_o (\frac{1}{2})^n$	
	where N is the amount you have now, N_o is the amount you the number of half-lives that have elapsed.	started with, and <i>n</i> is
	Because the number of half-lives equals the total time elapse	ed (t) divided by the
	half-life $t_{\frac{1}{2}}$, we can replace $n = \frac{t}{t_{\frac{1}{2}}}$ and rewrite the equation	n as:
	$N = N_o \left(\frac{1}{2}\right)^{\frac{t}{t_2}} \text{ or } \frac{N}{N_o} = \left(\frac{1}{2}\right)^{\frac{t}{t_2}}$	
	If you want to find either N or N_o , you can plug the values for	or t and $t_{\frac{1}{2}}$ into the
	above equation.	, <u>-</u>
	1	

Big Ideas	Details				Unit	: Atomic ar	nd Nuclear	- Physics
	Sample Problem:							
	Q: If you start with 228 g of ⁹⁰ Sr, how much would remain after 112.4 years?							
	A: $N_0 = 228 \text{ g}$							
	N =							
	$t_{\frac{1}{2}}$	= 28.1 years (fror	n the "Sele	ected Radio	oisotopes"	table in yo	our reference	ce
	tab	les)						
	<i>t</i> =	112.4 years						
		$N = N_0 \left(\frac{1}{2} \right)$, ^{8.1} – (228)	$(1)^4 - (228)^4$	$B\left(\frac{1}{16}\right) = 14$	25 g	
		<i>N</i> – (22)	$(\frac{1}{2})$	-(220)	$(\frac{1}{2})^{-(220)}$	"\(<u>16</u>) ⁻¹⁴	.29g	
		if the decay happ mple), you can us		ur over an	integer nu	mber of ha	alf-lives (as	in this
		# years	0	28.1	56.2	84.3	112.4	
		# half-lives	0	1	2	3	4	
		amount left	228 g	114 g	57 g	28.5 g	14.25 g	

Big Ideas	Details	Unit: Atomic and Nuclear Physics
	Finding	the Time that has Passed
	Integer Number of Half-L	ives
		h divided by the amount left is an exact power of two, of half-lives and you can just make a table.
	Sample problem:	
	Q: If you started with 64 g of remaining? The half-life (¹³¹ I, how long would it take until there was only 4 g $t_{\frac{1}{2}}$) of ¹³¹ I is 8.07 days.

A: $\frac{64}{4} = 16$ which is a power of 2, so we can simply make a table:

# half-lives	0	1	2	3	4
amount remaining	64 g	32 g	16 g	8 g	4 g

From the table, after 4 half-lives, we have 4 g remaining.

The half-life ($t_{1/2}$) of ¹³¹I is 8.07 days.

8.07 × 4 = 32.3 days

g Ideas	Details Unit: Atomic and Nuclear Physics				
	Non-Integer Number of Half-Lives				
	If you need to find the elapsed time and it is not an exact half-life, you need to use logarithms.				
	In mathematics, the only reason you ever need to use logarithms is when you need to solve for a variable that's in an exponent. For example, suppose we have the expression of the form $a^{b} = c$.				
	If <i>b</i> is a constant, we can solve for either <i>a</i> or <i>c</i> , as in the expressions:				
	$a^3 = 21$ ($\sqrt[3]{a^3} = \sqrt[3]{21} = 2.76$)				
	$6^2 = c$ ($6^2 = 36$)				
	However, we can't do this if a and c are constants and we need to solve for b , as in the expression:				
	3 ^{<i>b</i>} = 17				
	To solve for <i>b</i> , we need to get <i>b</i> out of the exponent. We do this by taking the logarithm of both sides:				
	<i>b</i> log(3) = log(17)				
	$b = \frac{\log(17)}{\log(3)} = \frac{1.23}{0.477} = 2.58$				
	log(3) 0.477				
	It doesn't matter which base you use. Using In instead of log gives the same result:				
	<i>b</i> In(3)=In(17)				
	$b = \frac{ln(17)}{ln(3)} = \frac{2.83}{1.10} = 2.58$				
	We can apply this same logic to the half-life equation:				
	$\frac{N}{N_o} = \left(\frac{1}{2}\right)^{\frac{t}{t_{\frac{1}{2}}}}$				
	$\ln N - \ln N_o = \frac{t}{t_{\frac{1}{2}}} \ln\left(\frac{1}{2}\right)$				
	The College Board prefers to define a decay constant $\lambda = \frac{\ln 2}{t_{\frac{1}{2}}}$, which gives				
	$N = N_o e^{-\lambda t}$ and $\ln \frac{N}{N_o} = -\lambda t$				

Half-Life

Page: 485

	nall-Lile	Page: 486
Big Ideas	Details	Unit: Atomic and Nuclear Physics
	Sample problem:	
	Q: If you started with 64 g of ¹³¹ I, how lon	g would it take until there was only 5.75 g
	remaining? The half-life (\mathcal{T}) of ¹³¹ I is 8.	.07 days.
	A: We have 5.75 g remaining. However,	$\frac{64}{5.75}$ = 11.13, which is not a power of two.
	This means we don't have an integer n logarithms:	umber of half-lives, so we need to use
	$\frac{N}{N_o} = ($	
	$\ln N - \ln N_o$	$=\frac{t}{t_{\frac{1}{2}}}\ln\left(\frac{1}{2}\right)$
	ln 5.75 – ln 64	$=\frac{t}{8.07}\ln\left(\frac{1}{2}\right)$
	1 7402 4 1590	t (0.6021)
	1.7492-4.1589	$=\frac{-0.6931}{8.07}$
	-2.4097 =	-0.0859 t
	28.1 da	ays = t
	Homework	<pre>c Problems</pre>
	For these problems, you will need to use h Selected Radioisotopes on page 513 of you	
	 (M) If a lab had 128 g of ³H waste today? (Note: you may round off) 	49 years ago, how much of it would be left to a whole number of half-lives.)
	Ancivor: 9 g	
	Answer: 8g	

Big Ideas [Details	Unit: Atomic and Nuclear Physics
	2.	(S) Suppose you set aside a 20. g sample of ⁴² K at 5:00pm on a Friday for an experiment, but you are not able to perform the experiment until 9:00am on Monday (64 hours later). How much of the ⁴² K will be left?
		Answer: 0.56 g
	3.	(M) If a school wants to dispose of small amounts of radioactive waste, they can store the materials for ten half-lives and then dispose of the materials as regular trash.
		a. If we had a sample of ³² P, how long would we need to store it before disposing of it?
		Answer: 143 days
		b. If we had started with 64 g of ³² P, how much ³² P would be left after ten half-lives? Approximately what fraction of the original amount would be left?
		Answer: 0.063 g; approximately $\frac{1}{1000}$ of the original amount.
	4.	(M) If the carbon in a sample of human bone contained 30. % of the expected amount of 14 C, approximately how old is the sample?
		Answer: 9 950 years