Phase Changes & Heating Curves

Unit: Heat & Thermodynamics

NGSS Standards: HS-PS3-1

AP Physics 2 Learning Objectives: N/A

Knowledge/Understanding Goals:
- phases and phase changes
- how heat is transferred in a phase change
- why evaporation causes cooling

Skills:
- calculate the heat absorbed or produced during phase changes
- plot and make calculations from heating curves

Language Objectives:
- Understand and correctly use the terms “phase change,” “heat of fusion,” “heat of vaporization,” and “heating curve.”
- Accurately describe and apply the concepts described in this section using appropriate academic language.
- Set up and solve heating curve problems.

Labs, Activities & Demonstrations:
- evaporation from washcloth
- energy released by paraffin phase change

Notes:

phase: a term that relates to how rigidly the atoms or molecules in a substance are connected.

solid: molecules are rigidly connected. A solid has a definite shape and volume.

liquid: molecules are loosely connected—bonds are continuously forming and breaking. A liquid has a definite volume, but not a definite shape.

gas: molecules are not connected. A gas has neither a definite shape nor a definite volume. Gases will expand to fill whatever space they occupy.

Use this space for summary and/or additional notes:
plasma: the system has enough heat to remove electrons from atoms, which means the system is comprised of particles with rapidly changing charges.

phase change: when an object or substance changes from one phase to another through gaining or losing heat.

Breaking bonds requires energy. Forming bonds releases energy. This is true for the bonds that hold a solid or liquid together as well as for chemical bonds (regardless of what your biology teacher may have told you!)

i.e., you need to add energy to turn a solid to a liquid (melt it), or to turn a liquid to a gas (boil it). Energy is released when a gas condenses or a liquid freezes. (E.g., ice in your ice tray needs to give off heat in order to freeze. Your freezer needs to remove that heat in order to make this happen.)

The reason evaporation causes cooling is because the system (the water) needs to absorb heat from its surroundings (e.g., your body) in order to make the change from a liquid to a gas (vapor). When the water absorbs heat from you and evaporates, you have less heat, which means you have cooled off.

Calculating the Heat of Phase Changes

heat of fusion \((\Delta H_{\text{fus}})\) (sometimes called “latent heat” or “latent heat of fusion”):
the amount of heat required to melt one kilogram of a substance. This is also the heat released when one kilogram of a liquid substance freezes. For example, the heat of fusion of water is 334 \(\frac{\text{kJ}}{\text{kg}}\) (which also equals 334 \(\frac{\text{J}}{\text{g}}\)).

The heat required to melt a sample of water is therefore:

\[
Q = m\Delta H_{\text{fus}} = m(334 \frac{\text{kJ}}{\text{kg}})
\]

(Note that by convention, heat is in kilojoules rather than Joules.)

heat of vaporization \((\Delta H_{\text{vap}})\): the amount of heat required to vaporize (boil) one kilogram of a substance. This is also the heat released when one kilogram of a gas condenses. For example, the heat of vaporization of water is 2260 \(\frac{\text{kJ}}{\text{kg}}\).

The heat required to boil a sample of water is therefore:

\[
Q = m\Delta H_{\text{vap}} = m(2260 \frac{\text{kJ}}{\text{kg}})
\]

(Again, note that heat is in kilojoules rather than Joules.)
heating curve: a graph of temperature vs. heat added. The following is a heating curve for water:

In the “solid” portion of the curve, the sample is solid water (ice). As heat is added, the temperature increases. The specific heat capacity of ice is $2.11 \frac{kJ}{kg \cdot ^\circ C}$, so the heat required is:

$$Q_{\text{solid}} = mC\Delta T = m(2.11 \frac{kJ}{kg \cdot ^\circ C})(\Delta T)$$

In the “melting” portion of the curve, the sample is a mixture of ice and water. As heat is added, the ice melts, but the temperature remains at 0°C until all of the ice is melted. The heat of fusion of ice is $334 \frac{kJ}{kg}$, so the heat required is:

$$Q_{\text{melt}} = m\Delta H_{\text{fus}} = m(334 \frac{kJ}{kg})$$

In the “liquid” portion of the curve, the sample is liquid water. As heat is added, the temperature increases. The specific heat capacity of liquid water is $4.18 \frac{kJ}{kg \cdot ^\circ C}$, so the heat required is:

$$Q_{\text{liquid}} = mC\Delta T = m(4.18 \frac{kJ}{kg \cdot ^\circ C})(\Delta T)$$

Use this space for summary and/or additional notes.
In the “boiling” portion of the curve, the sample is a mixture of water and water vapor (steam). As heat is added, the water boils, but the temperature remains at 100°C until all of the water has boiled. The heat of vaporization of water is 2260 \(\text{kJ/kg} \), so the heat required is:

\[
Q_{\text{boil}} = m \Delta H_{\text{vap}} = m(2260 \text{ kJ/kg})
\]

In the “gas” portion of the curve, the sample is water vapor (steam). As heat is added, the temperature increases. The specific heat capacity of steam is approximately 2.08 \(\text{kJ/kg}^\circ \text{C} \) (at 100°C; the specific heat capacity of steam decreases as the temperature increases), so the heat required is:

\[
Q_{\text{gas}} = mC\Delta T = m(2.08 \text{ kJ/kg}^\circ \text{C})(\Delta T)
\]
Steps for Solving Heating Curve Problems

A heating curve problem is a problem in which a substance is heated across a temperature range that passes through the melting and/or boiling point of the substance, which means the problem includes heating or cooling steps and melting/freezing or boiling/condensing steps.

1. Sketch the heating curve for the substance over the temperature range in question. Be sure to include the melting and boiling steps as well as the heating steps.

2. From your sketch, determine whether the temperature range in the problem passes through the melting and/or boiling point of the substance.

3. Split the problem into:
 a. Heating (or cooling) steps within each temperature range.
 b. Melting or boiling (or freezing or condensing) steps.

4. Find the heat required for each step.
 a. For the heating/cooling steps, use the equation \(Q = mc\Delta T \).
 b. For melting/freezing steps, use the equation \(Q = m\Delta H_{fus} \).
 c. For boiling/condensing steps, use the equation \(Q = m\Delta H_{vap} \).

5. Add the values of \(Q \) from each step to find the total.
Sample Problem

Q: How much heat would it take to raise the temperature of 0.0150 kg of H₂O from −25.0°C to +130.0°C?

A: The H₂O starts out as ice. We need to:

1. Heat the ice from −25.0°C to its melting point (0°C).
2. Melt it.
3. Heat the water up to its boiling point (from 0°C to 100°C).
4. Boil it.
5. Heat the steam from 100°C to 130°C.
6. Add up the heat for each step to find the total.

heat solid: \[Q_1 = mC \Delta T = (0.0150 \text{ kg})(2.11 \frac{\text{kJ}}{\text{kg} \cdot \text{°C}})(25 \text{ °C}) = 0.79125 \text{ kJ} \]

melt: \[Q_2 = m \Delta H_{fus} = (0.0150 \text{ g})(334 \frac{\text{kJ}}{\text{kg}}) = 5.010 \text{ kJ} \]

heat liquid: \[Q_3 = mC \Delta T = (0.0150 \text{ kg})(4.18 \frac{\text{kJ}}{\text{kg} \cdot \text{°C}})(100 \text{ °C}) = 6.27 \text{ kJ} \]

boil: \[Q_4 = m \Delta H_{vap} = (0.0150 \text{ kg})(2260 \frac{\text{kJ}}{\text{kg}}) = 33.90 \text{ kJ} \]

heat gas: \[Q_5 = mC \Delta T = (0.0150 \text{ kg})(2.08 \frac{\text{kJ}}{\text{kg} \cdot \text{°C}})(30 \text{ °C}) = 0.936 \text{ kJ} \]

\[Q_{total} = Q_1 + Q_2 + Q_3 + Q_4 + Q_5 \]
\[Q_{total} = 0.791 + 5.010 + 6.27 + 33.90 + 0.936 = 46.91 \text{ kJ} \]
Homework Problems

For the following problems, use data from the following table:

<table>
<thead>
<tr>
<th></th>
<th>C (sol.) (kJ/kg°C)</th>
<th>M.P. (°C)</th>
<th>ΔH_fus (kJ/kg)</th>
<th>C (liq) (kJ/kg°C)</th>
<th>B.P. (°C)</th>
<th>ΔH_vap (kJ/kg)</th>
<th>C_p (gas) (kJ/kg°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>2.11</td>
<td>0</td>
<td>334</td>
<td>4.18</td>
<td>100</td>
<td>2260</td>
<td>2.08*</td>
</tr>
<tr>
<td>potassium</td>
<td>0.560</td>
<td>62</td>
<td>61.4</td>
<td>1.070</td>
<td>760</td>
<td>2025</td>
<td>0.671</td>
</tr>
<tr>
<td>mercury</td>
<td>0.142</td>
<td>−39</td>
<td>11.3</td>
<td>0.140</td>
<td>357</td>
<td>293</td>
<td>0.104</td>
</tr>
<tr>
<td>silver</td>
<td>0.217</td>
<td>962</td>
<td>111</td>
<td>0.318</td>
<td>2212</td>
<td>2360</td>
<td>—</td>
</tr>
</tbody>
</table>

*Note that because of the volume change from heating, the specific heat capacity of gases, C_p, increases with increasing temperature.

1. A 0.0250 kg sample of water is heated from −40.0°C to 150. °C.
 a. Sketch the heating curve for the above process. Label the starting temperature, melting point, boiling point, and final temperature on the y-axis.

Use this space for summary and/or additional notes.
2. A 0.085 kg sample of mercury is heated from 25°C to 500°C.
 a. Sketch the heating curve for the above process. Label the starting temperature, melting point, boiling point, and final temperature on the y-axis.

 b. Calculate the heat required for each step of the heating curve, and the total heat required.

 Answer: 80.01 kJ

2. A 0.085 kg sample of mercury is heated from 25°C to 500°C.
 a. Sketch the heating curve for the above process. Label the starting temperature, melting point, boiling point, and final temperature on the y-axis.

 b. Calculate the heat required for each step of the heating curve, and the total heat required.

 Answer: 30.12 kJ
3. A 0.045 kg block of silver at a temperature of 22°C is heated with 20.0 kJ of energy. Calculate the total heat required by calculating the heat for each step until the entire 20.0 kJ is accounted for.

What is the final temperature and what is the physical state (solid, liquid, gas) of the silver at that temperature?

Answers: liquid, 1369°C